Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(6): 933-940, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38275935

RESUMEN

In response to microbial infection, the nonclassical Ag-presenting molecule MHC class I-related protein 1 (MR1) presents secondary microbial metabolites to mucosal-associated invariant T (MAIT) cells. In this study, we further characterize the repertoire of ligands captured by MR1 produced in Hi5 (Trichoplusia ni) cells from Mycobacterium smegmatis via mass spectrometry. We describe the (to our knowledge) novel MR1 ligand photolumazine (PL)V, a hydroxyindolyl-ribityllumazine with four isomers differing in the positioning of a hydroxyl group. We show that all four isomers are produced by M. smegmatis in culture and that at least three can induce MR1 surface translocation. Furthermore, human MAIT cell clones expressing distinct TCR ß-chains differentially responded to the PLV isomers, demonstrating that the subtle positioning of a single hydroxyl group modulates TCR recognition. This study emphasizes structural microheterogeneity within the MR1 Ag repertoire and the remarkable selectivity of MAIT cell TCRs.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
2.
Methods Mol Biol ; 2098: 191-207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31792824

RESUMEN

In lieu of peptides, the monomorphic MHC-I-like molecule MR1 presents small molecule antigens to stimulate a subset of αß T cells known as mucosal-associated (semi-) invariant T (MAIT) cells or, more broadly, MR1-restricted (MR1T) cells. The MR1 ligands identified to date are limited to derivatives and intermediates of the riboflavin and folate biosynthesis pathways and their presentation is therefore thought to be an indicator of infection by microbial species that can synthesize riboflavin. MAIT cells have, in recent years, been studied and isolated using a tetrameric reagent of recombinant MR1 loaded with the canonical ligand 5-OP-RU due to its potency toward MAIT clones. However, new evidence has shown that the repertoire of MR1 ligands is much more diverse than previously appreciated and, consistent with this, that the 5-OP-RU tetramer does not bind all MR1T cells. To study MR1-restricted T cell clones in the context of unique bacterial infection, we have generated a tetramer of MR1 loaded with diverse microbial antigens. The production of this reagent is detailed in this chapter.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Patógeno/inmunología , Cuerpos de Inclusión , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/inmunología , Multimerización de Proteína , Proteínas Recombinantes , Línea Celular , Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/aislamiento & purificación , Humanos , Cuerpos de Inclusión/metabolismo , Ligandos , Activación de Linfocitos/inmunología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/aislamiento & purificación , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
3.
Sci Immunol ; 3(25)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006464

RESUMEN

MR1-restricted T cells (MR1Ts) are a T cell subset that recognize and mediate host defense to a broad array of microbial pathogens, including respiratory pathogens (e.g., Mycobacterium tuberculosis, Streptococcus pyogenes, and Francisella tularensis) and enteric pathogens (e.g., Escherichia coli and Salmonella species). Mucosal-associated invariant T (MAIT) cells, a subset of MR1Ts, were historically defined by the use of a semi-invariant T cell receptor (TCR) and recognition of small molecules derived from the riboflavin biosynthesis pathway presented on MR1. We used mass spectrometry to identify the repertoire of ligands presented by MR1 from the microbes E. coli and Mycobacterium smegmatis We found that the MR1 ligandome is unexpectedly broad, revealing functionally distinct ligands derived from E. coli and M. smegmatis The identification, synthesis, and functional analysis of mycobacterial ligands reveal that MR1T ligands can be distinguished by MR1Ts with diverse TCR usage. These data demonstrate that MR1 can serve as an immune sensor of the microbial ligandome.


Asunto(s)
Escherichia coli/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Metaboloma , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/metabolismo , Mycobacterium smegmatis/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Línea Celular , Humanos , Ligandos
4.
Proc Natl Acad Sci U S A ; 112(39): 12139-44, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26371315

RESUMEN

Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 4-4.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin.


Asunto(s)
Candida/genética , Centrómero/genética , Heterocromatina/genética , Secuencia de Bases , Inmunoprecipitación de Cromatina , Segregación Cromosómica/fisiología , Biología Computacional , Datos de Secuencia Molecular , Plásmidos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
PLoS Genet ; 9(10): e1003935, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204326

RESUMEN

Deacetylases of the Sir2 or sirtuin family are thought to regulate life cycle progression and life span in response to nutrient availability. This family has undergone successive rounds of duplication and diversification, enabling the enzymes to perform a wide variety of biological functions. Two evolutionarily conserved functions of yeast Sir2 proteins are the generation of repressive chromatin in subtelomeric domains and the suppression of unbalanced recombination within the tandem rDNA array. Here, we describe the function of the Sir2 ortholog ClHst1 in the yeast Clavispora lusitaniae, an occasional opportunistic pathogen. ClHst1 was localized to the non-transcribed spacer regions of the rDNA repeats and deacetylated histones at these loci, indicating that, like other Sir2 proteins, ClHst1 modulates chromatin structure at the rDNA repeats. However, we found no evidence that ClHst1 associates with subtelomeric regions or impacts gene expression directly. This surprising observation highlights the plasticity of sirtuin function. Related yeast species, including Candida albicans, possess an additional Sir2 family member. Thus, it is likely that the ancestral Candida SIR2/HST1 gene was duplicated and subfunctionalized, such that HST1 retained the capacity to regulate rDNA whereas SIR2 had other functions, perhaps including the generation of subtelomeric chromatin. After subsequent species diversification, the SIR2 paralog was apparently lost in the C. lusitaniae lineage. Thus, C. lusitaniae presents an opportunity to discover how subtelomeric chromatin can be reconfigured.


Asunto(s)
Evolución Molecular , Histona Desacetilasas del Grupo III/genética , Heterocromatina/genética , Saccharomycetales/enzimología , Acetilación , Cromatina/genética , Secuencia Conservada/genética , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas del Grupo III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Telómero/genética
6.
Eukaryot Cell ; 10(9): 1183-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21764908

RESUMEN

The transcriptional silencing of the cryptic mating-type loci in Saccharomyces cerevisiae is one of the best-studied models of repressive heterochromatin. However, this type of heterochromatin, which is mediated by the Sir proteins, has a distinct molecular composition compared to the more ubiquitous type of heterochromatin found in Schizosaccharomyces pombe, other fungi, animals, and plants and characterized by the presence of HP1 (heterochromatin protein 1). This review discusses how the loss of important heterochromatin proteins, including HP1, in the budding yeast lineage presented an evolutionary opportunity for the development and diversification of alternative varieties of heterochromatin, in which the conserved deacetylase Sir2 and the replication protein Orc1 play key roles. In addition, we highlight how this diversification has been facilitated by gene duplications and has contributed to adaptations in lifestyle.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Heterocromatina/genética , Complejo de Reconocimiento del Origen/genética , Saccharomycetales/genética , Sirtuina 2/genética , Homólogo de la Proteína Chromobox 5 , Duplicación de Gen , Silenciador del Gen , Heterocromatina/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
7.
Mol Cell Biol ; 31(16): 3351-65, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21690292

RESUMEN

Protein families are generated by successive rounds of gene duplication and subsequent diversification. However, the paths by which duplicated genes acquire distinct functions are not well characterized. We focused on a pair of duplicated deacetylases from Saccharomyces cerevisiae, Sir2 and Hst1, that subfunctionalized after duplication. As a proxy for the ancestral, nonduplicated deacetylase, we studied Sir2 from another yeast, Kluyveromyces lactis. We compared the interaction domains of these deacetylases for the Sir transcriptional silencing complex, which acts with ScSir2, and the Sum1 repressor, which acts with ScHst1, and found that these interaction domains have been retained over the course of evolution and can be disrupted by simple amino acid substitutions. Therefore, Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations in these interaction domains.


Asunto(s)
Mutación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Evolución Molecular , Kluyveromyces/enzimología , Kluyveromyces/genética , Dominios y Motivos de Interacción de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Sirtuina 2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA