Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 17(1): 8, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350944

RESUMEN

Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP7, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na+/K+-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.


Asunto(s)
Inositol , ATPasa Intercambiadora de Sodio-Potasio , Transducción de Señal , Transporte de Proteínas , Neuronas/fisiología
2.
Cardiovasc Res ; 120(8): 954-970, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38252884

RESUMEN

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.


Asunto(s)
Adiponectina , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica , Animales , Adiponectina/metabolismo , Adiponectina/genética , Adiponectina/sangre , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfatos de Inositol/metabolismo , Adipocitos/metabolismo , Adipocitos/enzimología , Adipocitos/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Masculino , Ratones , Modelos Animales de Enfermedad , Transducción de Señal , Proteolisis , Humanos
3.
J Cell Biochem ; 125(3): e30526, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38229533

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective cure. GGGGCC repeat expansion in C9orf72 is the most common genetic cause of both ALS and FTD. A key pathological feature of C9orf72 related ALS/FTD is the presence of abnormal dipeptide repeat proteins translated from GGGGCC repeat expansion, including poly Glycine-Arginine (GR). In this study, we observed that (GR)50 conferred significant mitochondria damage and cytotoxicity. Metformin, the most widely used clinical drug, successfully relieved (GR)50 induced mitochondrial damage and inhibited (GR)50 related cytotoxicity. Further research revealed metformin effectively restored mitochondrial function by upregulating AKT phosphorylation in (GR)50 expressed cells. Taken together, our results indicated restoring mitochondrial function with metformin may be a rational therapeutic strategy to reduce poly(GR) toxicity in C9orf72 ALS/FTD patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Fosforilación , Dipéptidos
4.
J Cardiovasc Transl Res ; 17(1): 197-215, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37615888

RESUMEN

Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.


Asunto(s)
Difosfatos , Fosfatos de Inositol , Animales , Fosfatos de Inositol/metabolismo , Transducción de Señal , Mamíferos/metabolismo
5.
Biomed Pharmacother ; 161: 114449, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36857911

RESUMEN

The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.


Asunto(s)
Fosfatos de Inositol , Itraconazol , Itraconazol/farmacología , Fosfatos de Inositol/metabolismo , Adhesiones Focales , Difosfatos/metabolismo , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Fosforilación , Células Endoteliales/metabolismo , Adhesión Celular
6.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115740

RESUMEN

Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

8.
Cell Rep ; 26(10): 2692-2703.e7, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840891

RESUMEN

Autophagy plays a broad role in health and disease. Here, we show that inositol polyphosphate multikinase (IPMK) is a prominent physiological determinant of autophagy and is critical for liver inflammation and regeneration. Deletion of IPMK diminishes autophagy in cell lines and mouse liver. Regulation of autophagy by IPMK does not require catalytic activity. Two signaling axes, IPMK-AMPK-Sirt-1 and IPMK-AMPK-ULK1, appear to mediate the influence of IPMK on autophagy. IPMK enhances autophagy-related transcription by stimulating AMPK-dependent Sirt-1 activation, which mediates the deacetylation of histone 4 lysine 16. Furthermore, direct binding of IPMK to ULK and AMPK forms a ternary complex that facilitates AMPK-dependent ULK phosphorylation. Deletion of IPMK in cell lines and intact mice virtually abolishes lipophagy, promotes liver damage as well as inflammation, and impairs hepatocyte regeneration. Thus, targeting IPMK may afford therapeutic benefits in disabilities that depend on autophagy and lipophagy-specifically, in liver inflammation and regeneration.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Hepatitis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Regeneración Hepática/fisiología , Hígado/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Autofagia/fisiología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Femenino , Células HEK293 , Hepatitis/genética , Hepatitis/patología , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Transfección
9.
Proc Natl Acad Sci U S A ; 116(8): 3278-3287, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718399

RESUMEN

Cells express a family of three inositol hexakisphosphate kinases (IP6Ks). Although sharing the same enzymatic activity, individual IP6Ks mediate different cellular processes. Here we report that IP6K3 is enriched at the leading edge of migrating cells where it associates with dynein intermediate chain 2 (DIC2). Using immunofluorescence microscopy and total internal reflection fluorescence microscopy, we found that DIC2 and IP6K3 are recruited interdependently to the leading edge of migrating cells, where they function coordinately to enhance the turnover of focal adhesions. Deletion of IP6K3 causes defects in cell motility and neuronal dendritic growth, eventually leading to brain malformations. Our results reveal a mechanism whereby IP6K3 functions in coordination with DIC2 in a confined intracellular microenvironment to promote focal adhesion turnover.


Asunto(s)
Dineínas Citoplasmáticas/genética , Dendritas/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Encéfalo/metabolismo , Encéfalo/patología , Adhesión Celular/genética , Movimiento Celular/genética , Microambiente Celular/genética , Adhesiones Focales/genética , Células HEK293 , Humanos , Neuronas/metabolismo
10.
J Neurosci ; 38(34): 7409-7419, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30006360

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks) regulate various biological processes. Among pyrophosphates generated by IP6Ks, diphosphoinositol pentakisphosphate (IP7), and bis-diphosphoinositol tetrakisphosphate have been extensively characterized. IP7 is produced in mammals by a family of inositol hexakisphosphate kinases, IP6K1, IP6K2, and IP6K3, which have distinct biological functions. We report that IP6K2 binds protein 4.1.N with high affinity and specificity. Nuclear translocation of 4.1N, which is required for its principal functions, is dependent on IP6K2. Both of these proteins are highly expressed in granule cells of the cerebellum where their interaction regulates Purkinje cell morphology and cerebellar synapses. The deletion of IP6K2 in male/female mice elicits substantial defects in synaptic influences of granule cells upon Purkinje cells as well as notable impairment of locomotor function. Moreover, the disruption of IP6K2-4.1N interactions impairs cell viability. Thus, IP6K2 and its interaction with 4.1N appear to be major determinants of cerebellar disposition and psychomotor behavior.SIGNIFICANCE STATEMENT Inositol phosphates are produced by a family of inositol hexakisphosphate kinases (IP6Ks)-IP6K1, IP6K2, and IP6K3. Of these, the physiological roles of IP6K2 in the brain have been least characterized. In the present study, we report that IP6K2 binds selectively to the neuronal protein 4.1N. Both of these proteins are highly expressed in granule cells of the cerebellum. Using IP6K2 knock-out (KO) mice, we establish that IP6K2-4.1N interactions in granule cells regulate Purkinje cell morphology, the viability of cerebellar neurons, and psychomotor behavior.


Asunto(s)
Cerebelo/fisiología , Proteínas del Citoesqueleto/fisiología , Proteínas de la Membrana/fisiología , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/fisiología , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Supervivencia Celular , Cerebelo/citología , Cerebelo/enzimología , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Unión Proteica , Desempeño Psicomotor/fisiología , Células de Purkinje/enzimología , Células de Purkinje/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/fisiología
11.
Sci Rep ; 8(1): 7039, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728588

RESUMEN

Inositol hexakisphosphate kinase-1 (IP6K1) is required for male fertility, but the underlying mechanisms have been elusive. Here, we report that IP6K1 is required for multiple aspects of male germ cell development. This development requires selective interactions between germ cells and Sertoli cells, namely apical ectoplasmic specialization. Spermiation (sperm release) requires tubulobulbar complexes. We found that the apical ectoplasmic specialization and tubulobulbar complexes were poorly formed or disrupted in IP6K1 KOs. Deletion of IP6K1 elicited several aberrations, including: 1, sloughing off of round germ cells; 2, disorientation and malformation of elongating/elongated spermatids; 3, degeneration of acrosomes; 4, defects in germ-Sertoli cell interactions and 5, failure of spermiation. Eventually the sperm cells were not released but phagocytosed by Sertoli cells leading to an absence of sperm in the epididymis.


Asunto(s)
Comunicación Celular , Células Germinativas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Animales , Eliminación de Gen , Células Germinativas/citología , Células Germinativas/ultraestructura , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Células de Sertoli/citología , Espermátides/metabolismo , Espermátides/patología , Espermátides/ultraestructura , Espermatozoides/metabolismo , Espermatozoides/patología , Espermatozoides/ultraestructura
12.
Nat Commun ; 9(1): 51, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302060

RESUMEN

Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the repeat-associated non-AUG (RAN) translation of (GGGGCC) n -containing RNAs into poly-dipeptides can initiate in vivo without a 5'-cap. The primary RNA substrate for RAN translation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR). Compounds inhibiting phospho-eIF2α-signaling pathways are shown to suppress RAN translation. Since the poly-dipeptides can themselves induce stress, these findings support a feedforward loop with initial repeat-mediated toxicity enhancing RAN translation and subsequent production of additional poly-dipeptides through ISR, thereby promoting progressive disease.


Asunto(s)
Proteína C9orf72/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Estrés Fisiológico/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos , Retroalimentación Fisiológica , Demencia Frontotemporal/genética , Células HeLa , Humanos , Intrones , Péptidos , Fosforilación , Biosíntesis de Proteínas , Empalme del ARN , Regulación hacia Arriba
13.
Circ Res ; 122(3): 457-472, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29279301

RESUMEN

RATIONALE: Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. OBJECTIVE: We have investigated the role of IPMK in regulating angiogenesis. METHODS AND RESULTS: Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. CONCLUSIONS: IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosfatos de Inositol/metabolismo , Neovascularización Fisiológica/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Animales , Barrera Hematoencefálica , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteolisis , ARN Interferente Pequeño/genética , Organismos Libres de Patógenos Específicos , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(8): 2036-2041, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28154132

RESUMEN

Inositol hexakisphosphate kinase 1 (IP6K1), which generates 5-diphosphoinositol pentakisphosphate (5-IP7), physiologically mediates numerous functions. We report that IP6K1 deletion leads to brain malformation and abnormalities of neuronal migration. IP6K1 physiologically associates with α-actinin and localizes to focal adhesions. IP6K1 deletion disrupts α-actinin's intracellular localization and function. The IP6K1 deleted cells display substantial decreases of stress fiber formation and impaired cell migration and spreading. Regulation of α-actinin by IP6K1 requires its kinase activity. Deletion of IP6K1 abolishes α-actinin tyrosine phosphorylation, which is known to be regulated by focal adhesion kinase (FAK). FAK phosphorylation is substantially decreased in IP6K1 deleted cells. 5-IP7, a product of IP6K1, promotes FAK autophosphorylation. Pharmacologic inhibition of IP6K by TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] recapitulates the phenotype of IP6K1 deletion. These findings establish that IP6K1 physiologically regulates neuronal migration by binding to α-actinin and influencing phosphorylation of both FAK and α-actinin through its product 5-IP7.


Asunto(s)
Actinina/metabolismo , Movimiento Celular/fisiología , Quinasa 1 de Adhesión Focal/metabolismo , Neuronas/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Encéfalo/anomalías , Encéfalo/enzimología , Línea Celular , Inhibidores Enzimáticos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
15.
Elife ; 52016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27787197

RESUMEN

Blockade of lysosomal calcium release due to lysosomal lipid accumulation has been shown to inhibit mTORC1 signaling. However, the mechanism by which lysosomal calcium regulates mTORC1 has remained undefined. Herein we report that proper lysosomal calcium release through the calcium channel TRPML1 is required for mTORC1 activation. TRPML1 depletion inhibits mTORC1 activity, while overexpression or pharmacologic activation of TRPML1 has the opposite effect. Lysosomal calcium activates mTORC1 by inducing association of calmodulin (CaM) with mTOR. Blocking the interaction between mTOR and CaM by antagonists of CaM significantly inhibits mTORC1 activity. Moreover, CaM is capable of stimulating the kinase activity of mTORC1 in a calcium-dependent manner in vitro. These results reveal that mTOR is a new type of CaM-dependent kinase, and TRPML1, lysosomal calcium and CaM play essential regulatory roles in the mTORC1 signaling pathway.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal
16.
J Neurosci ; 35(31): 11056-67, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245967

RESUMEN

The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT: We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Sinapsis/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Forma de la Célula/fisiología , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Células de Purkinje/citología
17.
Proc Natl Acad Sci U S A ; 112(6): 1773-8, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25617365

RESUMEN

The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell-cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fosfatos de Inositol/metabolismo , Metástasis de la Neoplasia/fisiopatología , Fosfotransferasas (Aceptor del Grupo Fosfato)/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP , Animales , Western Blotting , Adhesión Celular/fisiología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Inmunoprecipitación , Fosfatos de Inositol/biosíntesis , Ratones , Ratones Desnudos , Microscopía Fluorescente , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
18.
J Biol Chem ; 289(43): 29631-41, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25164819

RESUMEN

D-Serine, an endogenous co-agonist for the glycine site of the synaptic NMDA glutamate receptor, regulates synaptic plasticity and is implicated in schizophrenia. Serine racemase (SR) is the enzyme that converts L-serine to D-serine. In this study, we demonstrate that SR interacts with the synaptic proteins, postsynaptic density protein 95 (PSD-95) and stargazin, forming a ternary complex. SR binds to the PDZ3 domain of PSD-95 through the PDZ domain ligand at its C terminus. SR also binds to the C terminus of stargazin, which facilitates the cell membrane localization of SR and inhibits its activity. AMPA receptor activation internalizes SR and disrupts its interaction with stargazin, therefore derepressing SR activity, leading to more D-serine production and potentially facilitating NMDA receptor activation. These interactions regulate the enzymatic activity as well as the intracellular localization of SR, potentially coupling the activities of NMDA and AMPA receptors. This shuttling of a neurotransmitter synthesizing enzyme between two receptors appears to be a novel mode of synaptic regulation.


Asunto(s)
Canales de Calcio/metabolismo , Ácido Glutámico/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , N-Metilaspartato/metabolismo , Racemasas y Epimerasas/metabolismo , Transmisión Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Animales , Biocatálisis , Membrana Celular/metabolismo , Homólogo 4 de la Proteína Discs Large , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Modelos Biológicos , Unión Proteica , Ratas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Mol Cell ; 54(1): 119-132, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24657168

RESUMEN

The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell death. In the present study we report an apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex, thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine 15 to activate the cell death program in human cancer cells and in murine B cells.


Asunto(s)
Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/enzimología , Linfocitos B/patología , Sitios de Unión , Proteínas Portadoras/genética , Quinasa de la Caseína II/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas , Células HCT116 , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/deficiencia , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Proteínas Proto-Oncogénicas c-ets/genética , Interferencia de ARN , Serina , Transducción de Señal , Proteínas de Unión a Telómeros/genética , Transfección , Proteína p53 Supresora de Tumor/genética
20.
Biochem Biophys Res Commun ; 438(2): 364-9, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23892038

RESUMEN

In cancer patients, the development of resistance to anti-angiogenic agents targeting the VEGF pathway is common. Increased pericyte coverage of the tumor vasculature undergoing VEGF targeted therapy has been suggested to play an important role in resistance. Therefore, reducing the pericytes coverage of the tumor vasculature has been suggested to be a therapeutic approach in breaking the resistance to and increasing the efficacy of anti-angiogenic therapies. To screen compound libraries, a simple in vitro assay of blood vessel maturation demonstrating endothelial cells and pericytes association while forming lumenized vascular structures is needed. Unfortunately, previously described 3-dimensional, matrix based assays are laborious and challenging from an image and data acquisition perspective. For these reasons they generally lack the scalability needed to perform in a high-throughput environment. With this work, we have developed a novel in vitro blood vessel maturation assay, in which lumenized, vascular structures form in one optical plane and mesenchymal progenitor cells (10T1/2) differentiate into pericyte-like cells, which associate with the endothelial vessels (HUVECs). The differentiation of the 10T1/2 cells into pericyte-like cells is visualized using a GFP reporter controlled by the alpha smooth muscle actin promoter (SMP-8). The organization of these vascular structures and their recruited mural cells in one optical plane allows for automated data capture and subsequent image analysis. The ability of this assay to screen for inhibitors of pericytes recruitment was validated. In summary, this novel assay of in vitro blood vessel maturation provides a valuable tool to screen for new agents with therapeutic potential.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Evaluación Preclínica de Medicamentos/métodos , Actinas/metabolismo , Animales , Benzamidas/farmacología , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Fibroblastos/citología , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mesilato de Imatinib , Indoles/farmacología , Lentivirus/metabolismo , Ratones , Músculo Liso/metabolismo , Neovascularización Fisiológica , Pericitos/citología , Piperazinas/farmacología , Regiones Promotoras Genéticas , Pirimidinas/farmacología , Pirroles/farmacología , Células Madre/citología , Sunitinib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...