Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401307, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801308

RESUMEN

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

2.
Materials (Basel) ; 16(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444926

RESUMEN

Tungsten (W), as a promising plasma-facing material for fusion nuclear reactors, exhibits ductility reduction. Introducing high-density coherent nano-dispersoids into the W matrix is a highly efficient strategy to break the tradeoff of the strength-ductility performance. In this work, we performed helium (He) ion irradiation on coherent oxide-dispersoids strengthened (ODS) W to investigate the effect of coherent nanoparticle interfaces on the behavior of He bubbles. The results show that the diameter and density of He bubbles in ODS W are close to that in W at low dose of He ion irradiation. The radiation-induced hardening increment of ODS W, being 25% lower than that of pure W, suggests the involvement of the coherent interface in weakening He ion irradiation-induced hardening and emphasizes the potential of coherent nano-dispersoids in enhancing the radiation resistance of W-based materials.

3.
Materials (Basel) ; 16(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297056

RESUMEN

The AISI 316L austenitic stainless steel fabricated by selective laser melting (SLM) is considered to have great prospects for applications in nuclear systems. This study investigated the He-irradiation response of SLM 316L, and several possible reasons for the improved He-irradiation resistance of SLM 316L were systematically revealed and evaluated by using TEM and related techniques. The results show that the effects of unique sub-grain boundaries have primary contributions to the decreased bubble diameter in SLM 316L compared to that in the conventional 316L counterpart, while the effects of oxide particles on bubble growth are not the dominant factor in this study. Moreover, the He densities inside the bubbles were carefully measured using electron energy loss spectroscopy (EELS). The mechanism of stress-dominated He densities in bubbles was validated, and the corresponding reasons for the decrease in bubble diameter were freshly proposed in SLM 316L. These insights help to shed light on the evolution of He bubbles and contribute to the ongoing development of the steels fabricated by SLM for advanced nuclear applications.

4.
Adv Mater ; 35(24): e2212213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929743

RESUMEN

Direct neutron detection based on semiconductor crystals holds promise to transform current neutron detector technologies and further boosts their widespread applications. It is, however, long impeded by the dearth of suitable materials in the form of sizeable bulk crystals. Here, high-quality centimeter-sized LiInP2 Se6 single crystals are developed using the Bridgman method and their structure and property characteristics are systematically investigated. The prototype detectors fabricated from the crystals demonstrate an energy resolution of 53.7% in response to α-particles generated from an 241 Am source and robust, well-defined response spectra to thermal neutrons that exhibit no polarization or degradation effects under prolonged neutron/γ-ray irradiation. The primary mechanisms of Se-vacancy and InLi antisite defects in the carrier trapping process are also identified. Such insights are critical for further enhancing the energy resolution of LiInP2 Se6 bulk crystals toward the intrinsic level (≈8.6% as indicated by the chemical vapor transport-grown thin crystals). These results pave the way for practically adopting LiInP2 Se6 single crystals in new-generation solid-state neutron detectors.

5.
Nat Mater ; 22(4): 442-449, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35637339

RESUMEN

Materials capable of sustaining high radiation doses at a high temperature are required for next-generation fission and future fusion energy. To date, however, even the most promising structural materials cannot withstand the demanded radiation environment due to irreversible radiation-driven microstructure degradation. Here we report a counterintuitive strategy to achieve exceptionally high radiation tolerance at high temperatures by enabling reversible local disordering-ordering transition of the introduced superlattice nanoprecipitates in metallic materials. As particularly demonstrated in martensitic steel containing a high density of B2-ordered superlattices, no void swelling was detected even after ultrahigh-dose radiation damage at 400-600 °C. The reordering process of the low-misfit superlattices in highly supersaturated matrices occurs through the short-range reshuffling of radiation-induced point defects and excess solutes right after rapid, ballistic disordering. This dynamic process stabilizes the microstructure, continuously promotes in situ defect recombination and efficiently prevents the capillary-driven long-range diffusion process. The strategy can be readily applied into other materials and pave the pathway for developing materials with high radiation tolerance.

6.
Nat Commun ; 13(1): 4894, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35985996

RESUMEN

Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+ of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K+ nanochannel, which conducts K+ much more rapidly than the other ions with K+/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications.

7.
Sci Adv ; 7(6)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33536215

RESUMEN

Tactile sensation plays important roles in virtual reality and augmented reality systems. Here, a self-powered, painless, and highly sensitive electro-tactile (ET) system for achieving virtual tactile experiences is proposed on the basis of triboelectric nanogenerator (TENG) and ET interface formed of ball-shaped electrode array. Electrostatic discharge triggered by TENG can induce notable ET stimulation, while controlled distance between the ET electrodes and human skin can regulate the induced discharge current. The ion bombardment technique has been used to enhance the electrification capability of triboelectric polymer. Accordingly, TENG with a contact area of 4 cm2 is capable of triggering discharge, leading to a compact system. In this skin-integrated ET interface, touching position and motion trace on the TENG surface can be precisely reproduced on skin. This TENG-based ET system can work for many fields, including virtual tactile displays, Braille instruction, intelligent protective suits, or even nerve stimulation.

8.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739533

RESUMEN

Cu2ZnSnS4 (CZTS) has been recognized as a promising thin-film absorber material of chalcopyrite-related solar cells. A two-stage method for fabricating CZTS films using CZTS nanoparticles was developed. Nanocrystal inks fabricated by a ball-milling method was utilized to °C deposit CZTS precursors by spin-coating approach. The CZTS precursors were annealed in the sulfur atmosphere under different annealing temperatures ranging from 550 °C to 650 °C. Influences of annealing temperature on grain growth, composition, crystallinity, and photovoltaic properties of CZTS films were characterized. With the increase of annealing temperature, grain growth was enhanced, while the sulfur atomic ratio fist increased then decreased. The crystallinity of the films was significantly improved after the annealing, and the obvious peak of the secondary phase of ZnS, were observed from the X-ray diffraction results, when the annealing temperature increased to 625 °C. However, the secondary phase was not detected from the surface Raman spectrum. Through comparing the Raman spectrum of different areas of the CZTS film, secondary phases of ZnS and SnS were observed, indicating the decomposition of CZTS films, due to the high temperature. The highest conversion efficiency of 7.5% was obtained when the annealing temperature was 600 °C.

9.
Materials (Basel) ; 12(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533217

RESUMEN

Despite intense research on high entropy films, the mechanism of film growth and the influence of key factors remain incompletely understood. In this study, high entropy films consisting of five elements (FeCoNiCrAl) with columnar and nanometer-scale grains were prepared by magnetron sputtering. The high entropy film growth mechanism, including the formation of the amorphous domain, equiaxial nanocrystalline structure and columnar crystal was clarified by analyzing the microstructure in detail. Besides, the impacts of the important deposition parameters including the substrate temperature, the powder loaded in the target, and the crystal orientation of the substrate on the grain size and morphology, phase structure, crystallinity and elemental uniformity were revealed. The mechanical properties of high entropy films with various microstructure features were investigated by nanoindentation. With the optimized grain size and microstructure, the film deposited at 350 °C using a power of 100 W exhibits the highest hardness of 11.09 GPa. Our findings not only help understanding the mechanisms during the high entropy film deposition, but also provide guidance in manufacturing other novel high entropy films.

10.
Materials (Basel) ; 12(16)2019 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-31426589

RESUMEN

This paper provides a new method to compare and then reveal the vacancy sink efficiencies quantitively between different hetero-interfaces with a shared Cu layer in one sample, in contrast to previous studies, which have compared the vacancy sink efficiencies of interfaces in different samples. Cu-Nb-Cu-V nanoscale metallic multilayer composites (NMMCs) containing Cu/V and Cu/Nb interfaces periodically were prepared as research samples and bombarded with helium ions to create vacancies which were filled by helium bubbles. A special Cu layer shared by adjoining Cu/V and Cu/Nb interfaces exists, in which the implanted helium concentration reaches its maximum and remains nearly constant with a well-designed incident energy. The results show that bubble-denuded zones (BDZ) close to interfaces exist, and that the width of the BDZ close to the Cu/V interface is less than that of Cu/Nb interface. This result is explained by one-dimensional diffusion theory, and the ratio of vacancy sink efficiency between Cu/V and Cu/Nb interfaces is calculated. Conclusively, Cu/Nb interfaces are more efficient than Cu/V interfaces in eliminating vacancies induced by radiation.

11.
Nanomaterials (Basel) ; 9(6)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195618

RESUMEN

Secondary phases are common in Cu2ZnSnS4 (CZTS) thin films, which can be fatal to the performance of solar cell devices fabricated from this material. They are difficult to detect by X-Ray diffraction (XRD) because of the weak peak in spectra compared with the CZTS layer. Herein, it was found that in-depth elemental distribution by a secondary ion mass spectroscopy method illustrated uniform film composition in the bulk with slight fluctuation between different grains. X-ray photoelectron spectroscopy (XPS) measurement was conducted after sputtering the layer with different depths. An Auger electron spectrum with Auger parameter were used to check the chemical states of elements and examine the distribution of secondary phases in the CZTS films. Secondary phases of CuS, ZnS and SnS were detected at the surface of the CZTS film within a 50-nm thickness while no secondary phases were discovered in the bulk. The solar cell fabricated with the as-grown CZTS films showed a conversion efficiency of 2.1% (Voc: 514.3 mV, Jsc: 10.4 mA/cm2, FF: 39.3%) with an area of 0.2 cm2 under a 100 mW/cm2 illumination. After a 50-nm sputtering on the CZTS film, the conversion efficiency of the solar cell was improved to 6.2% (Voc: 634.0 mV, Jsc: 17.3 mA/cm2, FF: 56.9%).

12.
Nanomaterials (Basel) ; 9(3)2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832326

RESUMEN

Cu2ZnSnS4 (CZTS) is a promising candidate material for photovoltaic applications; hence, ecofriendly methods are required to fabricate CZTS films. In this work, we fabricated CZTS nanocrystal inks by a wet ball milling method, with the use of only nontoxic solvents, followed by filtration. We performed centrifugation to screen the as-milled CZTS and obtain nanocrystals. The distribution of CZTS nanoparticles during centrifugation was examined and nanocrystal inks were obtained after the final centrifugal treatment. The as-fabricated CZTS nanocrystal inks were used to deposit CZTS precursors with precisely controlled CZTS films by a spin-coating method followed by a rapid high pressure sulfur annealing method. Both the grain growth and crystallinity of the CZTS films were promoted and the composition was adjusted from S poor to S-rich by the annealing. XRD and Raman characterization showed no secondary phases in the annealed film, the absence of the detrimental phases. A solar cell efficiency of 6.2% (open circuit voltage: Voc = 633.3 mV, short circuit current: Jsc = 17.6 mA/cm², and fill factor: FF = 55.8%) with an area of 0.2 cm² was achieved based on the annealed CZTS film as the absorber layer.

13.
Langmuir ; 34(43): 13041-13046, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30269501

RESUMEN

Nanoporous copper (NPC) is the potential affordable surface-enhanced Raman scattering (SERS) substrate in practical use, although restricted by a relatively small enhancement factor. In this report, Cu ion irradiation is applied to effectively increase the enhancement factor of NPC. Two levels of surface roughness in NPC after ion irradiation are proposed to account for the improved SERS effect by careful characterization of microstructures. This study provides a new strategy to acquire a higher Raman enhancement factor in NPC, which perhaps can be extended to other SERS substrate systems.

14.
ACS Appl Mater Interfaces ; 10(36): 30460-30469, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30101584

RESUMEN

Oxygen reduction and evolution reactions as two important electrochemical energy conversion processes in metal-air battery devices have aroused widespread concern. However, synthesis of low-cost non-noble metal-based bifunctional high-performance electrocatalysts is still a great challenge. In this work, we report on the design and synthesis of a novel Co-B/N codoped carbon with core-shell-structured nanoparticles aligned on graphene nanosheets (denoted as CoTIB-C/G) derived from cobalt tetrakis(1-imidazolyl)borate (CoTIB) and graphene oxide hybrid template. Compared with pristine CoTIB-derived bulk structure (CoTIB-C), CoTIB-C/G particles with an average size of 25 nm are uniformly dispersed on highly conductive graphene sheets in the hybrid material, thus dramatically increasing the utilization efficiency and activity of the active components upon oxygen reduction and evolution. After all, because of the "barrier effect" of graphene sheets toward CoTIB-C/G and the synergistic effect between Co nanoparticles and carbon shells linked to the graphene sheets, as well as heteroatoms' doping effect, the as-obtained bifunctional electrocatalyst exhibits remarkable oxygen reduction and evolution reaction activities in alkaline media, indicating its feasibility and potential in practical applications.

15.
Nanoscale ; 10(24): 11357-11364, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29876547

RESUMEN

Nanoscale PtPb catalysts with core-shell structure have been actively explored in recent years owing to their outstanding catalytic activity. We report on a new class of PtPb nanoplate (NP) catalyst with a novel structure realized by ion irradiation modification, which contains an interface formed by a crystalline phase and an amorphous phase simultaneously in an annular state. Significantly, the PtPb NP with the new structure shows superior catalytic activity towards the methanol oxidation reaction (MOR). The specific activity of PtPb NPs with the new structure reaches 4.32 mA cm-2 towards the MOR and the mass activity reaches 1.31 A mg-1, which is 1.9-fold and 1.4-fold greater than those for the original crystalline PtPb NPs, respectively. The outstanding catalytic activity could be attributed to the presence of the interface between a crystalline phase and an amorphous phase with a special electronic structure created by ion irradiation. Density functional theory calculations reveal that the novel interface activates the C-H and O-H bonds, leading to high electrocatalytic activity, and optimizes the adsorption of hydroxyl and intermediates on the surface to facilitate the oxidation reaction. The novel structure with an interface formed by a crystalline phase and an amorphous phase opens up a new approach to improve electrocatalytic activity.

16.
Sci Technol Adv Mater ; 19(1): 212-220, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535796

RESUMEN

The mechanism of radiation-induced detwinning is different from that of deformation detwinning as the former is dominated by supersaturated radiation-induced defects while the latter is usually triggered by global stress. In situ Kr ion irradiation was performed to study the detwinning mechanism of nanotwinned Cu films with various twin thicknesses. Two types of incoherent twin boundaries (ITBs), so-called fixed ITBs and free ITBs, are characterized based on their structural features, and the difference in their migration behavior is investigated. It is observed that detwinning during radiation is attributed to the frequent migration of free ITBs, while the migration of fixed ITBs is absent. Statistics shows that the migration distance of free ITBs is thickness and dose dependent. Potential migration mechanisms are discussed.

17.
Nanotechnology ; 29(18): 184001, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29451121

RESUMEN

In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

18.
Small ; 14(3)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165911

RESUMEN

Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C+ ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy.

19.
Sci Rep ; 6: 25436, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145983

RESUMEN

Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

20.
Sci Rep ; 5: 8877, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25777773

RESUMEN

When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...