Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer ; 8(19): 4075-4082, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187883

RESUMEN

Objective: To investigate the relationship between programmed death ligand 1 (PD-L1) expression using 5%, 25%, 50% cutoffs in tumor cells (TC) and postsurgical survival in non-small-cell lung cancer (NSCLC) patients. For samples with tumor infiltrating lymphocytes (TIL), correlation between PD-L1 expression in TIL using 1% cutoff and postsurgical survival was also evaluated. Methods: Primary NSCLC tumor surgical samples staging I to IIIA of 126 patients who underwent surgical procedures from September 2009 to August 2012 in Shanghai Chest Hospital, Shanghai Jiao Tong University were retrospectively included. PD-L1 protein expression was detected by immunohistochemistry (IHC) assays. A rabbit anti-human PD-L1 (E1L3N) monoclonal antibody (1:300, CST#13684, Cell Signaling Technology) was used for PD-L1 IHC staining. PD-L1 expression was evaluated both on TC and TIL. Univariate and multivariate analyses for postsurgical survival were done using Kaplan-Meier and Cox regression model, respectively. Results: The median postsurgical survival for all patients was 44.1 months [95% confidence interval (CI): 33.9-70.0 months). The median postsurgical survival for PD-L1 expression percentage 0, 1-50% and ≥50% were 51.9 months (95%CI: 33.9-70.0 months), 33.2 months (95%CI: 20.8-45.6 months) and 14.7 months (95%CI: 1.9-27.6 months), respectively (P = 0.002). Clinical stage and PD-L1 expression in TC (25% cutoff or 50% cutoff values) were found to be independent predictors for longer postsurgical survival in all cohort. Ninety (71.4%) of the 126 samples were identified to concurrent TIL. The median postsurgical survival time was 39.6 months (95% CI: 31.8-47.4 months) in patients with TIL. PD-L1 expression in TC (25% cutoff or 50% cutoff values) was found to be the independent predictor for longer postsurgical survival time in patients with TIL. Conclusion: PD-L1 negative expression in TC at 25% or 50% cutoff values was the independent predictor for longer postsurgical survival time in both NSCLC samples and NSCLC samples with TIL. For patients with PD-L1 high expression at 25% or 50% cutoff values, PD-L1 blocking may be considered.

2.
Oncotarget ; 8(16): 26845-26857, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28460468

RESUMEN

In order to explore the potential patient population who could benefit from anti PD-1/PD-L1 mono or combination therapies, this study aimed to profile a panel of immunotherapy related biomarkers (PD-1, PD-L1, CTLA-4 and CD8) and targeted therapy biomarkers (EGFR, KRAS, ALK, ROS1 and MET) in NSCLC.Tumor samples from 297 NSCLC patients, including 156 adenocarcinomas (AD) and 129 squamous cell carcinomas (SCC), were analyzed using immunohistochemistry, immunofluorescence, sequencing and fluorescence in situ hybridization.43.1% of NSCLC patients had PD-L1 positive staining on ≥ 5% tumor cells (TC). Furthermore, dual color immunofluorescence revealed that the majority of PD-L1/CD8 dual positive tumor infiltrating lymphocytes (TIL) had infiltrated into the tumor core. Finally, combined analysis of all eight biomarkers showed that tumor PD-L1 positivity overlapped with known alterations in NSCLC oncogenic tumor drivers in 26% of SCC and 76% of AD samples.Our illustration of the eight biomarkers' overlap provides an intuitive overview of NSCLC for personalized therapeutic strategies using anti-PD-1/PD-L1 immune therapies, either as single agents, or in combination with targeted therapies. For the first time, we also report that PD-L1 and CD8 dual positive TILs are predominantly located within the tumor core.


Asunto(s)
Antígeno B7-H1/genética , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anciano , Anciano de 80 o más Años , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Transformación Celular Neoplásica/genética , Femenino , Amplificación de Genes , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirugía , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Estadificación de Neoplasias , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo
3.
PLoS Genet ; 12(4): e1005895, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27093186

RESUMEN

Small cell lung cancer (SCLC) is an aggressive disease with poor survival. A few sequencing studies performed on limited number of samples have revealed potential disease-driving genes in SCLC, however, much still remains unknown, particularly in the Asian patient population. Here we conducted whole exome sequencing (WES) and transcriptomic sequencing of primary tumors from 99 Chinese SCLC patients. Dysregulation of tumor suppressor genes TP53 and RB1 was observed in 82% and 62% of SCLC patients, respectively, and more than half of the SCLC patients (62%) harbored TP53 and RB1 mutation and/or copy number loss. Additionally, Serine/Arginine Splicing Factor 1 (SRSF1) DNA copy number gain and mRNA over-expression was strongly associated with poor survival using both discovery and validation patient cohorts. Functional studies in vitro and in vivo demonstrate that SRSF1 is important for tumorigenicity of SCLC and may play a key role in DNA repair and chemo-sensitivity. These results strongly support SRSF1 as a prognostic biomarker in SCLC and provide a rationale for personalized therapy in SCLC.


Asunto(s)
Carcinoma de Células Pequeñas/genética , Neoplasias Pulmonares/genética , Proteínas Oncogénicas/genética , Factores de Empalme Serina-Arginina/genética , Adulto , Anciano , Variaciones en el Número de Copia de ADN , Daño del ADN , Femenino , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación
4.
PLoS One ; 10(12): e0143468, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26636767

RESUMEN

To investigate the relationships between Chromosome 7 gain, mesenchymal-epithelial transition factor (MET) gene copy number increase and MET protein overexpression in Chinese patients with papillary renal cell carcinoma (PRCC), immunohistochemistry (IHC), immunofluorescence (IF) and fluorescence in situ hybridization (FISH) were performed on 98 formalin-fixed, paraffin-embedded (FFPE) PRCC samples. Correlations between MET gene copy number increase, Chromosome 7 gain and MET protein overexpression were analyzed statistically. A highly significant correlation was observed between the percentage of tumor cells with MET gene copy number ≥3 and CEP7 copy number ≥3 (R2 = 0.90, p<0.001) across two subtypes of PRCC. In addition, the percentage of tumor cells with MET gene copy number ≥3 was found to increase along with increases in MET IHC score. This correlation was further confirmed in those PRCC tumor cells with average MET gene copy number >5 using combined IF and FISH methodology. Overall, this study provides evidence that Chromosome 7 gain drives MET gene copy number increase in PRCC tumors, and appears to subsequently lead to an increase in MET protein overexpression in these tumor cells. This supports MET activation as a potential therapeutic target in sporadic PRCC.


Asunto(s)
Carcinoma de Células Renales/genética , Cromosomas Humanos Par 7/genética , Amplificación de Genes , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Pueblo Asiatico/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , China , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Hibridación Fluorescente in Situ , Masculino , Pronóstico , Regulación hacia Arriba
5.
PLoS One ; 10(11): e0143207, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587992

RESUMEN

Current drug development efforts on gastric cancer are directed against several molecular targets driving the growth of this neoplasm. Intra-tumoral biomarker heterogeneity however, commonly observed in gastric cancer, could lead to biased selection of patients. MET, ATM, FGFR2, and HER2 were profiled on gastric cancer biopsy samples. An innovative pathological assessment was performed through scoring of individual biopsies against whole biopsies from a single patient to enable heterogeneity evaluation. Following this, false negative risks for each biomarker were estimated in silico. 166 gastric cancer cases with multiple biopsies from single patients were collected from Shanghai Renji Hospital. Following pre-set criteria, 56 ~ 78% cases showed low, 15 ~ 35% showed medium and 0 ~ 11% showed high heterogeneity within the biomarkers profiled. If 3 biopsies were collected from a single patient, the false negative risk for detection of the biomarkers was close to 5% (exception for FGFR2: 12.2%). When 6 biopsies were collected, the false negative risk approached 0%. Our study demonstrates the benefit of multiple biopsy sampling when considering personalized healthcare biomarker strategy, and provides an example to address the challenge of intra-tumoral biomarker heterogeneity using alternative pathological assessment and statistical methods.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Medicina de Precisión/métodos , Proteínas Proto-Oncogénicas c-met/genética , Receptor ErbB-2/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Biomarcadores de Tumor/genética , Biopsia , Reacciones Falso Negativas , Amplificación de Genes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Medición de Riesgo , Neoplasias Gástricas/patología
6.
PLoS One ; 10(7): e0134493, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217940

RESUMEN

Patient-derived cancer xenografts (PDCX) generally represent more reliable models of human disease in which to evaluate a potential drugs preclinical efficacy. However to date, only a few patient-derived gastric cancer xenograft (PDGCX) models have been reported. In this study, we aimed to establish additional PDGCX models and to evaluate whether these models accurately reflected the histological and genetic diversities of the corresponding patient tumors. By engrafting fresh patient gastric cancer (GC) tissues into immune-compromised mice (SCID and/or nude mice), thirty two PDGCX models were established. Histological features were assessed by a qualified pathologist based on H&E staining. Genomic comparison was performed for several biomarkers including ERBB1, ERBB2, ERBB3, FGFR2, MET and PTEN. These biomarkers were profiled to assess gene copy number by fluorescent in situ hybridization (FISH) and/or protein expression by immunohistochemistry (IHC). All 32 PDGCX models retained the histological features of the corresponding human tumors. Furthermore, among the 32 models, 78% (25/32) highly expressed ERBB1 (EGFR), 22% (7/32) were ERBB2 (HER2) positive, 78% (25/32) showed ERBB3 (HER3) high expression, 66% (21/32) lost PTEN expression, 3% (1/32) harbored FGFR2 amplification, 41% (13/32) were positive for MET expression and 16% (5/32) were MET gene amplified. Between the PDGCX models and their parental tumors, a high degree of similarity was observed for FGFR2 and MET gene amplification, and also for ERBB2 status (agreement rate = 94~100%; kappa value = 0.81~1). Protein expression of PTEN and MET also showed moderate agreement (agreement rate = 78%; kappa value = 0.46~0.56), while ERBB1 and ERBB3 expression showed slight agreement (agreement rate = 59~75%; kappa value = 0.18~0.19). ERBB2 positivity, FGFR2 or MET gene amplification was all maintained until passage 12 in mice. The stability of the molecular profiles observed across subsequent passages within the individual models provides confidence in the utility and translational significance of these models for in vivo testing of personalized therapies.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/patología , Animales , Femenino , Humanos , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Metástasis Linfática , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/mortalidad , Estadificación de Neoplasias , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Transl Med ; 13: 116, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25889497

RESUMEN

BACKGROUND: Genetic amplification of HER2 drives tumorigenesis and cancer progression in a subset of patients with gastric cancer (GC), and treatment with trastuzumab, a humanized HER2-neutralizing antibody, improves the overall survival rate of HER2-positive patients. However, a considerable portion of the patients does not respond to trastuzumab and the molecular mechanisms underlying the intrinsic resistance to anti-HER2 therapy in GC is not fully understood. METHODS: We performed whole-transcriptome sequencing on 21 HER2-positive tumor specimens from Chinese GC patients. Whole genome sequencing was performed on the three samples with HER2 fusion to discover the DNA integration structure. A multicolor FISH assay for HER2 split screening was conducted to confirm HER2 fusion and IHC (HercepTest™) was used to detect the membranous expression of HER2. Fusion cDNA were transfected into NIH/3T3 cells and generate stable cell line by lentivirus. The expression of exogenous HER2 fusion proteins and pHER2 were examined by western blot analysis. In vitro efficacy studies were also conducted by PD assay and softagar assay in cell line expression wild type and fusion HER2. T-DM1 was used to assess its binding to NIH/3T3 cells ectopically expressing wild-type and fusion HER2. Finally, the anti-tumor efficacy of trastuzumab was tested in NIH/3 T3 xenografts expressing the HER2 fusion variants. RESULTS: We identified three new HER2 fusions with ZNF207, MDK, or NOS2 in 21 HER2-amplified GC samples (14%; 3/21). Two of the fusions, ZNF207-HER2, and MDK-HER2, which are oncogenic, lead to aberrant activation of HER2 kinase. Treatment with trastuzumab inhibited tumor growth significantly in xenografts expressing MDK-HER2 fusion. In contrast, trastuzumab had no effect on the growth of xenografts expressing ZNF207-HER2 fusion, due to its inability to bind to trastuzumab. CONCLUSIONS: Our results provide the molecular basis of a novel resistance mechanism to trastuzumab-based anti-HER2 therapy, supporting additional molecule stratification within HER2-positive GC patients for more effective therapy options.


Asunto(s)
Genes erbB-2 , Oncogenes , Neoplasias Gástricas/genética , Animales , Secuencia de Bases , Cartilla de ADN , Fusión Génica , Humanos , Hibridación Fluorescente in Situ , Ratones , Células 3T3 NIH , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
BMC Cancer ; 15: 171, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25881079

RESUMEN

BACKGROUND: To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. METHODS: Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. RESULTS: The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. CONCLUSIONS: We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. TRIAL REGISTRATION: Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Piperidinas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Quinazolinas/uso terapéutico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Amplificación de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Translocación Genética , Resultado del Tratamiento
9.
Mol Oncol ; 9(1): 323-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25248999

RESUMEN

PURPOSE: To investigate the incidence of cMET gene copy number changes and protein overexpression in Chinese gastric cancer (GC) and to preclinically test the hypothesis that the novel, potent and selective cMET small-molecule inhibitor volitinib, will deliver potent anti-tumor activity in cMET-dysregulated GC patient-derived tumor xenograft (PDX) models. EXPERIMENTAL DESIGN: A range of assays were used and included; in vitro cell line panel screening and pharmacodynamic (PD) analysis, cMET fluorescence in-situ hybridization (FISH) and immunohistochemical (IHC) tissue microarray (TMA) analysis of Chinese GC (n = 170), and anti-tumor efficacy testing and PD analysis of gastric PDX models using volitinib. RESULTS: The incidence of cMET gene amplification and protein overexpression within Chinese patient GC tumors was 6% and 13%, respectively. Volitinib displayed a highly selective profile across a gastric cell line panel, potently inhibiting cell growth only in those lines with dysregulated cMET (EC50 values 0.6 nM/L-12.5 nM/L). Volitinib treatment led to pharmacodynamic modulation of cMET signaling and potent tumor stasis in 3/3 cMET-dysregulated GC PDX models, but had negligible activity in a GC control model. CONCLUSIONS: This study provides an assessment of tumor cMET gene copy number changes and protein overexpression incidence in a cohort of Chinese GC patients. To our knowledge, this is the first study to demonstrate anti-tumor efficacy in a panel of cMET-dysregulated gastric cancer PDX models, using a novel selective cMET-inhibitor (volitinib). Thus, the translational science presented here provides strong rationale for the investigation of volitinib as a therapeutic option for patients with GC tumors harboring amplified cMET.


Asunto(s)
Amplificación de Genes , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Triazinas/farmacología , Animales , Pueblo Asiatico , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-met/biosíntesis , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal/genética , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA