Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38592879

RESUMEN

Plants must adapt to the complex effects of several stressors brought on by global warming, which may result in interaction and superposition effects between diverse stressors. Few reports are available on how drought stress affects Xanthomonas albilineans (Xa) infection in sugarcane (Saccharum spp. hybrids). Drought and leaf scald resistance were identified on 16 sugarcane cultivars using Xa inoculation and soil drought treatments, respectively. Subsequently, four cultivars contrasting to drought and leaf scald resistance were used to explore the mechanisms of drought affecting Xa-sugarcane interaction. Drought stress significantly increased the occurrence of leaf scald and Xa populations in susceptible cultivars but had no obvious effect on resistant cultivars. The ROS bursting and scavenging system was significantly activated in sugarcane in the process of Xa infection, particularly in the resistant cultivars. Compared with Xa infection alone, defense response via the ROS generating and scavenging system was obviously weakened in sugarcane (especially in susceptible cultivars) under Xa infection plus drought stress. Collectively, ROS might play a crucial role involving sugarcane defense against combined effects of Xa infection and drought stress.

2.
Commun Biol ; 7(1): 368, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532083

RESUMEN

Sugarcane (Saccharum spp.) is an important sugar and biofuel crop in the world. It is frequently subjected to drought stress, thus causing considerable economic losses. Transgenic technology is an effective breeding approach to improve sugarcane tolerance to drought using drought-inducible promoter(s) to activate drought-resistance gene(s). In this study, six different promoters were cloned from sugarcane bacilliform virus (SCBV) genotypes exhibiting high genetic diversity. In ß-glucuronidase (GUS) assays, expression of one of these promoters (PSCBV-YZ2060) is similar to the one driven by the CaMV 35S promoter and >90% higher compared to the other cloned promoters and Ubi1. Three SCBV promoters (PSCBV-YZ2060, PSCBV-TX, and PSCBV-CHN2) function as drought-induced promoters in transgenic Arabidopsis plants. In Arabidopsis, GUS activity driven by promoter PSCBV-YZ2060 is also upregulated by abscisic acid (ABA) and is 2.2-5.5-fold higher when compared to the same activity of two plant native promoters (PScRD29A from sugarcane and PAtRD29A from Arabidopsis). Mutation analysis revealed that a putative promoter region 1 (PPR1) and two ABA response elements (ABREs) are required in promoter PSCBV-YZ2060 to confer drought stress response and ABA induction. Yeast one-hybrid and electrophoretic mobility shift assays uncovered that transcription factors ScbZIP72 from sugarcane and AREB1 from Arabidopsis bind with two ABREs of promoter PSCBV-YZ2060. After ABA treatment or drought stress, the expression levels of endogenous ScbZIP72 and heterologous GUS are significantly increased in PSCBV-YZ2060:GUS transgenic sugarcane plants. Consequently, promoter PSCBV-YZ2060 is a possible alternative promoter for genetic engineering of drought-resistant transgenic crops such as sugarcane.


Asunto(s)
Arabidopsis , Badnavirus , Arabidopsis/genética , Sequías , Fitomejoramiento , Regiones Promotoras Genéticas , Plantas Modificadas Genéticamente/genética
3.
Int J Biol Macromol ; 262(Pt 2): 129978, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340916

RESUMEN

The plant endophytic bacteria are a great source of nature insecticides. However, no such endophytic bacteria have been found in sugarcane, to address this gap, we isolated and identified a strain of Serratia marcescens with moderate insecticidal activity from sugarcane. Taken armyworm Mythimna separata as example, the mortality rates of oral infection and injection infection were 47.06 % and 91 %, respectively. The SM has significant negative affect on the growth, development, and reproduction of M. separata. After determining that these insecticidal substances, 33 potential virulence proteins were screened through the identification and prediction of bacterial proteins. Later we confirmed serralysin was a vital toxic protein from SM that caused M. separata death by prokaryotic expression. In addition, we also found that the intestinal tissue cells infected with SM or serralysin were severely diseased, which may be a major factor in M. separata demise. Finally, through gene expression level, protein molecular docking, we found the aminopeptidase-N would be one of the potential receptors of serralysin. Taken together, our findings indicate that sugarcane endophyte S. marcescens may be beneficial for pest control in sugarcane and explain its insecticidal mechanism. This study provides new ideas and materials for the biological control of pests.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Platelmintos , Saccharum , Animales , Insecticidas/farmacología , Serratia marcescens , Spodoptera , Larva , Simulación del Acoplamiento Molecular
4.
Front Microbiol ; 14: 1257355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744907

RESUMEN

Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.

5.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653854

RESUMEN

Leaf scald caused by Xanthomonas albilineans (Xa) is a major bacterial disease in sugarcane that represents a threat to the global sugar industry. Little is known about the population structure and genetic evolution of this pathogen. In this study, 39 Xa strains were collected from 6 provinces in China. Of these strains, 15 and 24 were isolated from Saccharum spp. hybrid and S. officinarum plants, respectively. Based on multilocus sequence analysis (MLSA), with five housekeeping genes, these strains were clustered into two distinct phylogenetic groups (I and II). Group I included 26 strains from 2 host plants, Saccharum spp. hybrid and S. officinarum collected from 6 provinces, while Group II consisted of 13 strains from S. officinarum plants in the Zhejiang province. Among the 39 Xa strains, nucleotide sequence identities from 5 housekeeping genes were: ABC (99.6-100%), gyrB (99.3-100%), rpoD (98.4-100%), atpD (97.0-100%), and glnA (97.6-100%). These strains were clustered into six groups (A-F), based on the rep-PCR fingerprinting, using primers for ERIC2, BOX A1R, and (GTG)5. UPGMA and PCoA analyses revealed that group A had the most strains (24), followed by group C with 11 strains, while there was 1 strain each in groups B and D-F. Neutral tests showed that the Xa population in S. officinarum had a trend toward population expansion. Selection pressure analysis showed purification selection on five concatenated housekeeping genes from all tested strains. Significant genetic differentiation and infrequent gene flow were found between two Xa populations hosted in Saccharum spp. hybrids and S. officinarum. Altogether, these results provide evidence of obvious genetic divergence and population structures among Xa strains from China.

7.
Ecotoxicol Environ Saf ; 254: 114759, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950993

RESUMEN

Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.


Asunto(s)
Saccharum , Selenio , Oligoelementos , Xanthomonas , Humanos , Selenio/farmacología , Selenio/metabolismo , Oligoelementos/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo
8.
Front Plant Sci ; 14: 1127928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814761

RESUMEN

Sugarcane (Saccharum spp.) is an important cash crop for production of sugar and bioethanol. Red stripe caused by Acidovorax avenae subsp. avenae (Aaa) is a disease that occurs in numerous sugarcane-growing regions worldwide. In this study, 17 strains of Aaa were isolated from 13 symptomatic leaf samples in China. Nine of these strains produced white-cream colonies on nutrient agar medium while the other eight produced yellow colonies. In pairwise sequence comparisons of the 16S-23S rRNA internally transcribed spacer (ITS), the 17 strains had 98.4-100% nucleotide identity among each other and 98.2-99.5% identity with the reference strain of Aaa (ATCC 19860). Three RFLP patterns based on this ITS sequence were also found among the strains of Aaa obtained in this study. Multilocus sequence typing (MLST) based on five housekeeping genes (ugpB, pilT, lepA, trpB, and gltA) revealed that the strains of Aaa from sugarcane in China and a strain of Aaa (30179) isolated from sorghum in Brazil formed a unique evolutionary subclade. Twenty-four additional strains of Aaa from sugarcane in Argentina and from other crops worldwide were distributed in two other and separate subclades, suggesting that strains of A. avenae from sugarcane are clonal populations with local specificities. Two strains of Aaa from China (CNGX08 forming white-cream colored colonies and CNGD05 forming yellow colonies) induced severe symptoms of red stripe in sugarcane varieties LC07-150 and ZZ8 but differed based on disease incidence in two separate inoculation experiments. Infected plants also exhibited increased salicylic acid (SA) content and transcript expression of gene PR-1, indicating that the SA-mediated signal pathway is involved in the response to infection by Aaa. Consequently, red stripe of sugarcane in China is caused by genetically different strains of Aaa and at least two morphological variants. The impact of these independent variations on epidemics of red stripe remains to be investigated.

9.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362319

RESUMEN

Sugarcane leaf scald is a systemic disease caused by Xanthomonas albilineans that limits sugarcane yield and quality. Previous research has shown that exogenous application of copper hydroxide to plants is effective in controlling this disease. However, long-term bactericide use causes serious "3R" problems: resistance, resurgence, and residue. It is therefore urgent to discover new methods for the improvement of bactericide efficiency and efficacy. In the present study, disease index values for leaf scald were measured in sugarcane seedlings over time to determine the effects of different concentrations of copper hydroxide, types of silicon additive, and treatment timing after inoculation with X. albilineans on controlling sugarcane leaf scald disease. Our results show copper hydroxide mixed with organosilicon additive could improve the bactericide efficiency and efficacy and reduce the growth of pathogenic bacteria, even at a reduced concentration in both laboratory and field conditions. This study provides an important practical model for controlling sugarcane leaf scald disease by reducing the concentration of bactericide and increasing its efficacy in sugarcane fields.


Asunto(s)
Saccharum , Xanthomonas , Saccharum/microbiología , Hojas de la Planta/microbiología
10.
Front Plant Sci ; 13: 1014266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275567

RESUMEN

Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.

11.
Front Plant Sci ; 13: 1087525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589125

RESUMEN

Leaf scald caused by Xanthomonas albilineans is one of the major bacterial diseases of sugarcane that threaten the sugar industry worldwide. Pathogenic divergence among strains of X. albilineans and interactions with the sugarcane host remain largely unexplored. In this study, 40 strains of X. albilineans from China were distributed into three distinct evolutionary groups based on multilocus sequence analysis and simple sequence repeats loci markers. In pathogenicity assays, the 40 strains of X. albilineans from China were divided into three pathogenicity groups (low, medium, and high). Twenty-four hours post inoculation (hpi) of leaf scald susceptible variety GT58, leaf populations of X. albilineans strain XaCN51 (high pathogenicity group) determined by qPCR were 3-fold higher than those of strain XaCN24 (low pathogenicity group). Inoculated sugarcane plants modulated the reactive oxygen species (ROS) homoeostasis by enhancing respiratory burst oxidase homolog (ScRBOH) expression and superoxide dismutase (SOD) activity and by decreasing catalase (CAT) activity, especially after infection by X. albilineans XaCN51. Furthermore, at 24 hpi, plants infected with XaCN51 maintained a lower content of endogenous salicylic acid (SA) and a lower expression level of SA-mediated genes (ScNPR3, ScTGA4, ScPR1, and ScPR5) as compared to plants infected with XaCN24. Altogether, these data revealed that the ROS production-scavenging system and activation of the SA pathway were involved in the sugarcane defense response to an attack by X. albilineans.

12.
Ecotoxicol Environ Saf ; 220: 112380, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058676

RESUMEN

Silicon (Si) is considered to be a plant growth and development regulator element as well as provide the regulatory response against various biotic stressors. However, the potential mechanism of Si enhancement to regulate plant disease resistance remains to be studied. Therefore, the current study evaluated the effects of Si application on the performance of sugarcane against Xanthomonas albilineans (Xa) infection. Si was applied exogenously (0, 3.85 and 7.70 g Si/kg soil) and the results show that plant height, stem circumference and leaf width of siliconized sugarcane have been improved, which effectively reduced the disease index (0.17-0.21) and incidence (58.2%-69.1%) after Xa infection. Lowest values of MDA (348.5 nmol g-1 FW) and H2O2 (3539.4 mmol/L) were observed in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (MDA: 392.6 nmol g-1 FW and H2O2: 3134.6 mmol/L) than that of the control. Whereas, PAL enzyme activity (50.8 mmol/L), JA (230.2 mmol/L) and SA (2.7 ug mL-1) contents were significantly higher in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (PAL: 46.3 mmol/L, JA: 182.7 mmol/L and SA: 2.4 ug mL-1) as compared to control. The lower MDA, H2O2 level and higher enzymatic activities were associated with the highest expression levels of their metabolic pathway associated genes i.e., ShMAPK1, ShLOX, ShPAL, ShAOS, ShAOC, ShC4H, ShCAT, Sh4CL and ShNPR1 (22.08, 15.56, 10.42, 3.35, 2.54, 2.14, 1.82, 1.67 and 1.22 folds, respectively) in 7.70 g Si/kg soil as compared to other experimental units and control. Overall, the results of current study indicates that siliconized sugarcane more actively regulates disease resistance through modulation of growth and MDA, H2O2, SA and JA associated metabolic pathways.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Saccharum/efectos de los fármacos , Silicio/farmacología , Xanthomonas , Resistencia a la Enfermedad/genética , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Redes y Vías Metabólicas/genética , Estrés Oxidativo , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta , Tallos de la Planta , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Saccharum/microbiología , Silicio/metabolismo , Suelo/química , Estrés Fisiológico , Xanthomonas/crecimiento & desarrollo
13.
Plant Dis ; 105(4): 896-903, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33044140

RESUMEN

Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.


Asunto(s)
Luteoviridae , Virus del Mosaico , China , Evolución Molecular , Genoma Viral/genética , Luteoviridae/genética , Virus del Mosaico/genética , Filogenia , Enfermedades de las Plantas , América del Sur , Zea mays
14.
Physiol Plant ; 171(1): 86-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32909626

RESUMEN

To systematically analyze mitogen-activated protein (MAP) kinase gene families and their expression profiles in sugarcane (Saccharum spp. hybrids; Sh) under diverse biotic and abiotic stresses, we identified 15 ShMAPKs, 6 ShMAPKKs and 16 ShMAPKKKs genes in the sugarcane cultivar R570 genome. These were also confirmed in one S. spontaneum genome and two transcriptome datasets of sugarcane trigged by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections. Phylogenetic analysis revealed that four subgroups were present in each ShMAPK and ShMAPKK family and three sub-families (RAF, MEKK and ZIK) presented in the ShMAPKKK family. Conserved protein motif and gene structure analyses supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ShMAPK, ShMAPKK and ShMAPKKK genes identified in Saccharum spp. R570 were distributed on chromosomes 1-7 and 9-10. RNA-seq and qRT-PCR analyses indicated that ShMAPK07 and ShMAPKKK02 were defense-responsive genes in sugarcane challenged by both Aaa and Xa stimuli, while some genes were upregulated specifically by Aaa and Xa infection. Additionally, ShMAPK05 acted as a negative regulator under drought and salinity stress, but served as a positive regulator under salicylic acid (SA) treatment. ShMAPK07 plays a positive role under drought stress, but a negative role under SA treatment. ShMAPKKK01 was negatively modulated by both salinity stress and SA treatment, whereas ShMAPKKK06 was positively regulated by both of the two stress stimuli. Our results suggest that members of MAPK cascade gene families regulate adverse stress responses through multiple signal transduction pathways in sugarcane.


Asunto(s)
Saccharum , Comamonadaceae , Regulación de la Expresión Génica de las Plantas , Mitógenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Estrés Fisiológico/genética
15.
Sci Rep ; 10(1): 13202, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764599

RESUMEN

RNA silencing is a conserved mechanism in eukaryotic organisms to regulate gene expression. Argonaute (AGO), Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) proteins are critical components of RNA silencing, but how these gene families' functions in sugarcane were largely unknown. Most stress-resistance genes in modern sugarcane cultivars (Saccharum spp.) were originated from wild species of Saccharum, for example S. spontaneum. Here, we used genome-wide analysis and a phylogenetic approach to identify four DCL, 21 AGO and 11 RDR genes in the S. spontaneum genome (termed SsDCL, SsAGO and SsRDR, respectively). Several genes, particularly some of the SsAGOs, appeared to have undergone tandem or segmental duplications events. RNA-sequencing data revealed that four SsAGO genes (SsAGO18c, SsAGO18b, SsAGO10e and SsAGO6b) and three SsRDR genes (SsRDR2b, SsRDR2d and SsRDR3) tended to have preferential expression in stem tissue, while SsRDR5 was preferentially expressed in leaves. qRT-PCR analysis showed that SsAGO10c, SsDCL2 and SsRDR6b expressions were strongly upregulated, whereas that of SsAGO18b, SsRDR1a, SsRDR2b/2d and SsRDR5 was significantly depressed in S. spontaneum plants exposed to PEG-induced dehydration stress or infected with Xanthomonas albilineans, causal agent of leaf scald disease of sugarcane, suggesting that these genes play important roles in responses of S. spontaneum to biotic and abiotic stresses.


Asunto(s)
Proteínas Argonautas/genética , Estudio de Asociación del Genoma Completo , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética , Saccharum/genética , Cromosomas de las Plantas/genética , Simulación por Computador , Regiones Promotoras Genéticas/genética , Mapeo de Interacción de Proteínas , Saccharum/enzimología , Saccharum/metabolismo
16.
Microorganisms ; 8(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947808

RESUMEN

Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane, which can result in reduced plant growth and plant death. In order to better understand the molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant (LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with 1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated. One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were upregulated, whereas the other half corresponded to downregulated proteins. The significantly upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system, glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new light on the differential expression of proteins in sugarcane cultivars in response to infection by X. albilineans. The identification of these genes provides important information for sugarcane variety improvement programs using molecular breeding strategies.

17.
Microorganisms ; 8(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861562

RESUMEN

Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0-72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant-pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.

18.
Plant Dis ; 103(12): 3251-3258, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31596691

RESUMEN

Ratoon stunting disease (RSD), one of the most important diseases of sugarcane, is caused by the bacterium Leifsonia xyli subsp. xyli (Lxx). Lxx infects sugarcane worldwide and RSD results in high yield losses and varietal degeneration. It is highly challenging to diagnose RSD based on visual symptomatology because this disease does not exhibit distinct external and internal symptoms. In this study, a novel Lxx-specific primer pair Lxx-F1/Lxx-R1 was designed to detect this pathogen using a conventional PCR assay. These primers were then compared with four published Lxx-specific primers and one universal Leifsonia generic primer pair LayF/LayR. Sugarcane leaf samples were collected from Saccharum spp. hybrids in commercial fields (315 samples) and from germplasm clones of five Saccharum species and Erianthus arundinaceus (216 samples). These samples were used for comparative field diagnosis with six conventional PCR assays. Sensitivity tests suggested that the PCR assay with primers Lxx-F1/Lxx-R1 had the same detection limit (1 pg of Lxx genomic DNA) as the primer pairs Cxx1/Cxx2 and CxxITSf#5/CxxITSr#5 and had 10-fold higher sensitivity than the primer pairs Pat1-F2/Pat1-R2, LayF/LayR, and C2F/C2R. Comparison of PCR assays revealed that natural Lxx-infection incidence (6.1%) in field sample evaluation identified by Lxx-F1/Lxx-R1 primers was higher than incidences (0.7 to 3.0%) determined by other primer pairs. Moreover, no nonspecific DNA amplification occurred within these field samples with Lxx-F1/Lxx-R1 primers, unlike with the primer pairs Cxx1/Cxx2 and LayF/LayR. Diverse Leifsonia strains were identified by PCR detection with LayF/LayR primers in the field samples, whereas whether these Leifsonia strains were pathogenic to sugarcane requires further research. Our investigations revealed that the PCR assay with the newly designed primers Lxx-F1/Lxx-R1 could be widely used for RSD diagnosis and Lxx-pathogen detection with satisfactory sensitivity and specificity.


Asunto(s)
Actinomycetales , Reacción en Cadena de la Polimerasa , Saccharum , Actinomycetales/genética , Cartilla de ADN/genética , Saccharum/microbiología , Sensibilidad y Especificidad
19.
Plant Pathol J ; 35(1): 41-50, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30828278

RESUMEN

Sugarcane bacilliform viruses (SCBV), which belong to the genus Badnavirus, family Caulimoviridae, are an important DNA virus complex that infects sugarcane. To explore the genetic diversity of the sugarcane-infecting badnavirus complex in China, we tested 392 sugarcane leaf samples collected from Fujian, Yunnan, and Hainan provinces for the occurrence of SCBV by polymerase chain reaction (PCR) assays using published primers SCBV-F and SCBV-R that target the reverse transcriptase/ribonuclease H (RT/RNase H) regions of the viral genome. A total of 111 PCR-amplified fragments (726 bp) from 63 SCBV-positive samples were cloned and sequenced. A neighbor-joining phylogenetic tree was constructed based on the SCBV sequences from this study and 34 published sequences representing 18 different phylogroups or genotypes (SCBV-A to -R). All SCBV-tested isolates could be classified into 20 SCBV phylogenetic groups from SCBV-A to -T. Of nine SCBV phylogroups reported in this study, two novel phylogroups, SCBV-S and SCBV-T, that share 90.0-93.2% sequence identity and show 0.07-0.11 genetic distance with each other in the RT/ RNase H region, are proposed. SCBV-S had 57.6-92.2% sequence identity and 0.09-0.66 genetic distance, while SCBV-T had 58.4-90.0% sequence identity and 0.11-0.63 genetic distance compared with the published SCBV phylogroups. Additionally, two other Badnavirus species, Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV), which originally clustered in phylogenetic groups SCBV-E and SCBV-F, respectively, are first reported in China. Our findings will help to understand the level of genetic heterogeneity present in the complex of Badnavirus species that infect sugarcane.

20.
Biomed Res Int ; 2018: 8678242, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175148

RESUMEN

Sugarcane-infecting badnaviruses (sugarcane bacilliform viruses, SCBVs) represent a genetically heterogeneous species complex, posing a serious threat to the yield and quality of sugarcane in all major producing regions. SCBVs are commonly transmitted across regions by the exchange of sugarcane germplasm. In this study, we develop two quick, sensitive, and reliable protocols for real-time quantitative PCR (qPCR) of Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV) using two sets of TaqMan probes and primers targeting the reverse transcriptase/ribonuclease H (RT/RNase H) region. The two assays had a detection limit of 100 copies of plasmid DNA and were 100 times more sensitive than conventional PCR. High specificity of the two assays was observed with respect to SCBIMV and SCBMOV. A total of 176 sugarcane leaf tissue samples from Fujian and Yunnan provinces were collected and analyzed in parallel by conventional PCR, SCBIMV-qPCR, and SCBMOV-qPCR. The SCBIMV-qPCR and SCBMOV-qPCR assays indicated that 50% (88/176) and 47% (83/176) samples tested positive, respectively, whereas only 29% (51/176) tested positive with conventional PCR with the primer pairs SCBV-F and SCBV-R. We demonstrate for the first time that SCBIMV and SCBMOV occur in China and reveal coinfection of both Badnavirus species in 29% (51/176) of tested leaf samples. Our findings supply sensitive and reliable qPCR assays for the detection and quantitation of SCBV in sugarcane quarantine programs.


Asunto(s)
Badnavirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharum/microbiología , China , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...