Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615326

RESUMEN

Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of ∼61 mV/decade, and a small gate hysteresis (∼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.

2.
Nat Commun ; 15(1): 1259, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341422

RESUMEN

Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 µΩ⋅cm) at room temperature under 9 T in ß-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized ß-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.

3.
J Phys Chem Lett ; 14(37): 8312-8319, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683279

RESUMEN

Polarons play a crucial role in energy conversion, but the microscopic mechanism remains unclear since they are susceptible to local atomic structures. Here, by employing ab initio nonadiabatic dynamic simulations, we investigate electron-hole (e-h) nonradiative recombination at the rutile TiO2(110) surface with varied amounts of oxygen vacancies (Vo). The isolated Vo facilitates e-h recombination through forming polarons compared to that in the defect-free surface. However, aggregated Vo forming clusters induce an order-of-magnitude acceleration of polaron diffusion by enhancing phonon excitations, which blocks the defect-mediated recombination and thus prolongs the photocarrier lifetime. We find that photoelectrons are driven to migrate toward the top surface due to polaron formation. Our results show the many-body effects of defects and polaron effects on determining the overall recombination rate, which has been ignored in the Shockley-Read-Hall model. The findings explain the controversial experimental observations and suggest that engineering Vo aggregation would instead improve photocatalysis efficiencies in polaronic materials.

4.
Phys Chem Chem Phys ; 25(35): 23879-23884, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642273

RESUMEN

The electronic properties of hydrogen-terminated biphenylene (BP) segments of different sizes on the sub-nanoscale are explored using density functional theory, and the size dependence of the energy gap is evaluated using a structural parameter as a function of the bond lengths and the electronic density contributions. More importantly, the energy gap is observed to decrease linearly with the reduced hydrogen-to-carbon ratio of the corresponding structures, while the decrease-rate undergoes a diminution of four times at a gap of 0.5 eV due to the transformed distribution of the lowest unoccupied molecular orbital. The results give a deep insight into the size-tunable energy gaps of BPs and provide a possibility for the preparation of hydrogen-terminated carbon materials with a desirable energy gap.

5.
Nat Commun ; 14(1): 4406, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479692

RESUMEN

Single-crystalline high-κ dielectric materials are desired for the development of future two-dimensional (2D) electronic devices. However, curent 2D gate insulators still face challenges, such as insufficient dielectric constant and difficult to obtain free-standing and transferrable ultrathin films. Here, we demonstrate that ultrathin Bi2SiO5 crystals grown by chemical vapor deposition (CVD) can serve as excellent gate dielectric layers for 2D semiconductors, showing a high dielectric constant (>30) and large band gap (~3.8 eV). Unlike other 2D insulators synthesized via in-plane CVD on substrates, vertically grown Bi2SiO5 can be easily transferred onto other substrates by polymer-free mechanical pressing, which greatly facilitates its ideal van der Waals integration with few-layer MoS2 as high-κ dielectrics and screening layers. The Bi2SiO5 gated MoS2 field-effect transistors exhibit an ignorable hysteresis (~3 mV) and low drain induced barrier lowering (~5 mV/V). Our work suggests vertically grown Bi2SiO5 nanoflakes as promising candidates to improve the performance of 2D electronic devices.

6.
Small Methods ; 7(9): e2300177, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37287373

RESUMEN

Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.

7.
ACS Nano ; 17(11): 10783-10791, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259985

RESUMEN

The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (∼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.

8.
Nat Mater ; 22(7): 832-837, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36894772

RESUMEN

The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel1,2. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration1,2. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface3,4. Here, we report a facile synthesis of a single-crystalline high-κ (κ of roughly 16.5) van der Waals layered dielectric Bi2SeO5. The centimetre-scale single crystal of Bi2SeO5 can be efficiently exfoliated to an atomically flat nanosheet as large as 250 × 200 µm2 and as thin as monolayer. With these Bi2SeO5 nanosheets as dielectric and encapsulation layers, 2D materials such as Bi2O2Se, MoS2 and graphene show improved electronic performances. For example, in 2D Bi2O2Se, the quantum Hall effect is observed and the carrier mobility reaches 470,000 cm2 V-1 s-1 at 1.8 K. Our finding expands the realm of dielectric and opens up a new possibility for lowering the gate voltage and power consumption in 2D electronics and integrated circuits.


Asunto(s)
Grafito , Silicio , Electrónica , Semiconductores
9.
Nano Lett ; 23(7): 2839-2845, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975717

RESUMEN

The emergence of intrinsic quantum anomalous Hall (QAH) insulators with a long-range ferromagnetic (FM) order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Built upon atom-thin Chern insulator monolayer MnBr3, we propose that the topologically nontrivial electronic states can be systematically tuned by inherent magnetic orders and external electric/optical fields in stacked Chern insulator bilayers. The FM bilayer illustrates a high-Chern-number QAH state characterized by both quantized Hall plateaus and specific magneto-optical Kerr angles. In antiferromagnetic bilayers, Berry curvature singularity induced by electrostatic fields or lasers emerges, which further leads to a novel implementation of the layer Hall effect depending on the chirality of irradiated circularly polarized light. These results demonstrate that abundant tunable topological properties can be achieved in stacked Chern insulator bilayers, thereby suggesting a universal routine to modulate d-orbital-dominated topological Dirac fermions.

10.
Nano Lett ; 22(18): 7659-7666, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069426

RESUMEN

Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20 000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of ∼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff ∼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.


Asunto(s)
Bismuto , Enfermedades Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamaño de la Partícula , Telurio/química
11.
Adv Mater ; 34(42): e2202754, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35906188

RESUMEN

Heteroepitaxy with large lattice mismatch remains a great challenge for high-quality epifilm growth. Although great efforts have been devoted to epifilm growth with an in-plane lattice mismatch, the epitaxy of 2D layered crystals on stepped substrates with a giant out-of-plane lattice mismatch is seldom reported. Here, taking the molecular-beam epitaxy of 2D semiconducting Bi2 O2 Se on 3D SrTiO3 substrates as an example, a step-climbing epitaxy growth strategy is proposed, in which the n-th (n = 1, 2, 3…) epilayer climbs the step with height difference from out-of-plane lattice mismatch and continues to grow the n+1-th epilayer. Step-climbing epitaxy can spontaneously relax and release the strain from the out-of-plane lattice mismatch, which ensures the high quality of large-area epitaxial films. Wafer-scale uniform 2D Bi2 O2 Se single-crystal films with controllable thickness can be obtained via step-climbing epitaxy. Most notably, one-unit-cell Bi2 O2 Se films (1.2 nm thick) exhibit a high Hall mobility of 180 cm2 V-1 s-1 at room temperature, which exceeds that of silicon and other 2D semiconductors with comparable thickness. As an out-of-plane lattice mismatch is generally present in the epitaxy of layered materials, the step-climbing epitaxy strategy expands the existing epitaxial growth theory and provides guidance toward the high-quality synthesis of layered materials.

12.
Front Psychol ; 13: 871707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677133

RESUMEN

Recent years have witnessed increasing popularity in the use of automatic written evaluation (AWE) in the writing context for its immediacy and high accessibility for EFL learners. Meanwhile, the effectiveness of the AWE tool in writing accuracy and ability is fully appreciated by the previous researchers. However, students' engagement in the revising process, key factors that mediate the uptake of feedback, and learning effect have not aroused much attention as expected. Thus, this review aimed to depict a broader picture of learners' behavioral, cognitive, and affective engagement in AWE feedback to bring a further understanding of how learners process the feedback and make the decision from a psychological perspective. Firstly, widely adopted targets in AWE research are discussed. Then, the definition of learner engagement and its constructs are presented based on existing research. After that, the link between AWE feedback and learner engagement has been taken into consideration. Finally, conclusions and suggestions are provided for insightful studies.

13.
Nano Lett ; 21(8): 3566-3572, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33830782

RESUMEN

Magnetic anisotropy is essential for permanent magnets to maintain their magnetization along specific directions. Understanding and controlling the magnetic anisotropy on a single-molecule scale are challenging but of fundamental importance for the future's spintronic technology. Here, by using scanning tunneling microscopy (STM), we demonstrated the ability to control the magnetic anisotropy by tuning the ligand field at the single-molecule level. We constructed a molecular magnetic complex with a single Mn atom and an organic molecule (4,4'-biphenyldicarbonitrile) as a ligand via atomic manipulation. Inelastic tunneling spectra (IETS) show that the Mn complex has much larger axial magnetic anisotropy than individual Mn atoms, and the anisotropy energy can be tuned by the coupling strength of the ligand. With density functional theory calculations, we revealed that the enhanced magnetic anisotropy of Mn arising from the carbonitrile ligand provides a prototype for the engineering of the magnetism of quantum devices.

14.
Angew Chem Int Ed Engl ; 59(41): 17938-17943, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32643300

RESUMEN

We exploit a high-performing resistive-type trace oxygen sensor based on 2D high-mobility semiconducting Bi2 O2 Se nanoplates. Scanning tunneling microscopy combined with first-principle calculations confirms an amorphous Se atomic layer formed on the surface of 2D Bi2 O2 Se exposed to oxygen, which contributes to larger specific surface area and abundant active adsorption sites. Such 2D Bi2 O2 Se oxygen sensors have remarkable oxygen-adsorption induced variations of carrier density/mobility, and exhibit an ultrahigh sensitivity featuring minimum detection limit of 0.25 ppm, long-term stability, high durativity, and wide-range response to concentration up to 400 ppm at room temperature. 2D Bi2 O2 Se arrayed sensors integrated in parallel form are found to possess an oxygen detection minimum of sub-0.25 ppm ascribed to an enhanced signal-to-noise ratio. These advanced sensor characteristics involving ease integration show 2D Bi2 O2 Se is an ideal candidate for trace oxygen detection.

15.
Phys Rev Lett ; 124(20): 206801, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501065

RESUMEN

Understanding the nonequilibrium dynamics of photoexcited polarons at the atomic scale is of great importance for improving the performance of photocatalytic and solar-energy materials. Using a pulsed-laser-combined scanning tunneling microscopy and spectroscopy, here we succeeded in resolving the relaxation dynamics of single polarons bound to oxygen vacancies on the surface of a prototypical photocatalyst, rutile TiO_{2}(110). The visible-light excitation of the defect-derived polarons depletes the polaron states and leads to delocalized free electrons in the conduction band, which is further corroborated by ab initio calculations. We found that the trapping time of polarons becomes considerably shorter when the polaron is bound to two surface oxygen vacancies than that to one. In contrast, the lifetime of photogenerated free electrons is insensitive to the atomic-scale distribution of the defects but correlated with the averaged defect density within a nanometer-sized area. Those results shed new light on the photocatalytically active sites at the metal-oxide surface.

16.
Sci Adv ; 6(17): eaaz3522, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494640

RESUMEN

The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.

17.
Sci Adv ; 6(10): eaaz0948, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32181356

RESUMEN

The layered antiferromagnetic MnBi2Te4 films have been proposed to be an intrinsic quantum anomalous Hall (QAH) insulator with a large gap. It is crucial to open a magnetic gap of surface states. However, recent experiments have observed gapless surface states, indicating the absence of out-of-plane surface magnetism, and thus, the quantized Hall resistance can only be achieved at the magnetic field above 6 T. We propose to induce out-of-plane surface magnetism of MnBi2Te4 films via the magnetic proximity with magnetic insulator CrI3. A strong exchange bias of ∼40 meV originates from the long Cr-eg orbital tails that hybridize strongly with Te p orbitals. By stabilizing surface magnetism, the QAH effect can be realized in the MnBi2Te4/CrI3 heterostructure. Moreover, the high-Chern number QAH state can be achieved by controlling external electric gates. Thus, the MnBi2Te4/CrI3 heterostructure provides a promising platform to realize the electrically tunable zero-field QAH effect.

18.
Nat Mater ; 19(6): 610-616, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203460

RESUMEN

Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that Bi2TeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its 'side' surfaces. The mirror symmetry of the crystal structure concurrently classifies it as a topological crystalline insulator. We investigated Bi2TeI spectroscopically to show the existence of both two-dimensional Dirac surface states, which are susceptible to mirror symmetry breaking, and one-dimensional channels that reside along the step edges. Their mutual coexistence on the step edge, where both facets join, is facilitated by momentum and energy segregation. Our observation of a dual topological insulator should stimulate investigations of other dual topology classes with distinct surface manifestations coexisting at their boundaries.

19.
Sci Adv ; 5(11): eaax6996, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31701006

RESUMEN

The growing diversity of topological classes leads to ambiguity between classes that share similar boundary phenomenology. This is the status of bulk bismuth. Recent studies have classified it as either a strong or a higher-order topological insulator, both of which host helical modes on their boundaries. We resolve the topological classification of bismuth by spectroscopically mapping the response of its boundary modes to a screw-dislocation. We find that the one-dimensional mode, on step-edges, extends over a wide energy range and does not open a gap near the screw-dislocations. This signifies that this mode binds to the screw-dislocation, as expected for a material with nonzero weak indices. We argue that the small energy gap, at the time reversal invariant momentum L, positions bismuth within the critical region of a topological phase transition between a higher-order topological insulator and a strong topological insulator with nonzero weak indices.

20.
Nano Lett ; 19(9): 6027-6034, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31416307

RESUMEN

Photoexcitation is a powerful means in distinguishing different interactions and manipulating the states of matter, especially in charge density wave (CDW) materials. The CDW state of 1T-TaS2 has been widely studied experimentally mainly because of its intriguing laser-induced ultrafast responses of electronic and lattice subsystems. However, the microscopic atomic dynamics and underlying electronic mechanism upon photoexcitation remain unclear. Here, we demonstrate photoexcitation induced ultrafast dynamics of CDW in 1T-TaS2 using time-dependent density functional theory molecular dynamics. We discover a novel collective oscillation mode between the CDW state and a transient state induced by photodoping, which is significantly different from thermally induced phonon mode and attributed to the modification of the potential energy surface from laser excitation. In addition, our finding validates nonthermal melting of CDW induced at low light intensities, supporting that conventional hot electron model is inadequate to explain photoinduced dynamics. Our results provide a deep insight into the coherent electron and lattice quantum dynamics during the formation and excitation of CDW in 1T-TaS2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...