Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(23): 13415-13430, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38824655

RESUMEN

This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.


Asunto(s)
Colitis , Colon , Microbioma Gastrointestinal , Mananos , FN-kappa B , Salmonella typhimurium , Transducción de Señal , Receptor Toll-Like 2 , Animales , Mananos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Colon/microbiología , Colon/metabolismo , Transducción de Señal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colitis/dietoterapia , Masculino , Humanos , Ratones Endogámicos C57BL , Fibras de la Dieta/farmacología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Amorphophallus/química
2.
Sci Total Environ ; 928: 171711, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38494025

RESUMEN

Chlorpyrifos (CHP) is an inexpensive highly effective organophosphate insecticide used worldwide. The unguided and excessive use of CHP by farmers has led to its significant accumulation in crops as well as contamination of water sources, causing health problems for humans and animals. Therefore, this study evaluated the toxicological effects of exposure to the environmental pollutant CHP at low, medium, and high (2.5, 5, and 10 mg·kg-1 BW) levels on rat liver by examining antioxidant levels, inflammation, and apoptosis based on the no observed adverse effect levels (NOAEL) (1 mg·kg-1 BW) and the CHP dose that does not cause any visual symptoms (5 mg·kg-1 BW). Furthermore, the involvement of the JAK/STAT and MAPK pathways in CHP-induced toxic effects was identified. The relationship between the expression levels of key proteins (p-JAK/JAK, p-STAT/STAT, p-JNK/JNK, p-P38/P38, and p-ERK/ERK) in the pathways and changes in the expression of markers associated with inflammation [inflammatory factors (IL-1ß, IL-6, IL-10, TNF-α), chemokines (GCLC and GCLM), and inflammatory signaling pathways (NF-кB, TLR2, TLR4, NLRP3, ASC, MyD88, IFN-γ, and iNOS)] and apoptosis [Bad, Bax, Bcl-2, Caspase3, Caspase9, and the cleavage substrate of Caspase PARP1] were also determined. The results suggest that CHP exposure disrupts liver function and activates the JAK/STAT and MAPK pathways via oxidative stress, exacerbating inflammation and apoptosis. Meanwhile, the JAK/STAT and MAPK pathways are involved in CHP-induced hepatotoxicity. These findings provide a novel direction for effective prevention and amelioration of health problems caused by CHP abuse in agriculture and households.


Asunto(s)
Cloropirifos , Contaminantes Ambientales , Insecticidas , Quinasas Janus , Hígado , Sistema de Señalización de MAP Quinasas , Cloropirifos/toxicidad , Animales , Ratas , Hígado/efectos de los fármacos , Quinasas Janus/metabolismo , Contaminantes Ambientales/toxicidad , Insecticidas/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factores de Transcripción STAT/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Sci Total Environ ; 903: 166449, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634732

RESUMEN

Chlorpyrifos (CPF) is an organophosphorus pesticide that is widely used in agricultural production and residential environments worldwide. In this study, we determined the harmful effects and toxicological mechanism of CPF in porcine trophectoderm (pTr) cells and the placenta of female mice during pregnancy. The findings revealed that CPF significantly decreased cell viability and increased intracellular lactate dehydrogenase (LDH) release in pTr cells. Similarly, CPF induced reproductive toxicity in pregnant maternal mice, including decreased maternal, fetal, and placental weights. Moreover, following CPF treatment, pTr cells and the placenta of female mice showed significant apoptosis. JC-1 staining and flow cytometry analysis also revealed that the mitochondrial membrane potential (MMP) of pTr cells treated with CPF was significantly depolarized. Additionally, CPF can induce an increase in reactive oxygen species (ROS) and barrier dysfunction in pTr cells and the placenta of female mice. We further verified that CPF-induced mitochondrial apoptosis is mediated by the MAPK signaling pathway, as shown by using of small molecular inhibitors of related proteins. Also, CPF-induced oxidative stress, barrier dysfunction, and mitochondrial apoptosis in pTr cells were alleviated by U0126, an inhibitor of the ERK/MAPK signaling pathway. These findings suggested that exposure to CPF in early pregnancy might be a potential risk fator affecting placental formation and function in humans and animals.

4.
ACS Appl Mater Interfaces ; 15(20): 24149-24161, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37166271

RESUMEN

Antibiotic resistance is an escalating global health concern that could result in tens of millions of deaths annually from drug-resistant bacterial infections in the future, especially in animal husbandry. Peptide antibacterial nanomaterials offer a competitive alternative to antibiotics because of their distinct mechanism of physically penetrating pathogenic biological membranes. This study developed amphiphilic co-assembled peptide nanofibers with high biological selectivity (PCBP-NCAP NFs) to overcome the high cytotoxicity of peptide PCBP and the low antibacterial activity of peptide NCAP. PCBP-NCAP NFs exhibit broad-spectrum antibacterial activity and excellent biocompatibility, with negligible in vivo and in vitro toxicity. Additionally, PCBP-NCAP NFs possess direct antibacterial efficacy and potential immunomodulatory capabilities using a piglet systemic infection model. Its unique mechanism of membrane penetration and the ability to bind to anionic components on the surface of pathogenic bacteria make them less susceptible to drug resistance. In conclusion, these findings have significant implications for the advancement of supramolecular peptide nanomedicines for clinical application and animal husbandry.


Asunto(s)
Infecciones Bacterianas , Nanofibras , Porcinos , Animales , Nanofibras/química , Infecciones Bacterianas/microbiología , Antibacterianos/química , Péptidos/química , Bacterias , Pruebas de Sensibilidad Microbiana
5.
Adv Mater ; 35(29): e2210766, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37143434

RESUMEN

Drug-resistant bacteria and biofilm-associated infections are prominent problems in the field of antibacterial medicine, seriously affecting human and animal health. Despite the great potential of nanomaterials in the antibacterial field, overcoming the paradox of size and charge, efficient penetration, and retention within biofilms remain a formidable challenge. Here, self-assembling chimeric peptide nanoassemblies composed of multiple functional fragments are designed for the treatment of drug-resistant bacteria and biofilm-associated infections. Notably, the chimeric peptide self-assembles into nanofibers at pH 7.4 and is transformable into nanoparticles in the acidic biofilm-infected microenvironment at pH 5.0, and thus achieves a size reduction and charge increase, improving the penetration into the bacterial biofilms and killing drug-resistant bacteria by a mechanism dominated by membrane cleavage. In vivo mouse and piglet infection models confirm the ability of chimeric peptide nanoassemblies to reduce bacterial load within biofilms. Collectively, this research on pathological-environment-driven nanostructural transformations may provide a theoretical basis for designing high-performance antibacterial nanomaterials and advance the application of peptide-based nanomaterials in medicine and animal husbandry.


Asunto(s)
Antibacterianos , Bacterias , Porcinos , Ratones , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/farmacología , Biopelículas , Concentración de Iones de Hidrógeno
6.
Acta Biomater ; 157: 210-224, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36503077

RESUMEN

Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.


Asunto(s)
Péptidos de Penetración Celular , Infecciones Estafilocócicas , Animales , Ratones , Porcinos , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química , Staphylococcus aureus , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
7.
J Hazard Mater ; 446: 130669, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586336

RESUMEN

The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.


Asunto(s)
Quitosano , Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Ratas , Animales , Cloropirifos/toxicidad , Cloropirifos/análisis , Residuos de Plaguicidas/análisis , Quitosano/farmacología , Compuestos Organofosforados , Ecosistema , Agua , Oligosacáridos/farmacología
8.
Compr Rev Food Sci Food Saf ; 21(4): 3326-3345, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35751400

RESUMEN

Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Mamíferos , Zearalenona/toxicidad
9.
Adv Sci (Weinh) ; 9(14): e2105955, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35285170

RESUMEN

As a novel type of antibiotic alternative, peptide-based antibacterial drug shows potential application prospects attributable to their unique mechanism for lysing the membrane of pathogenic bacteria. However, peptide-based antibacterial drugs suffer from a series of problems, most notably their immature stability, which seriously hinders their application. In this study, self-assembling chimeric peptide nanoparticles (which offer excellent stability in the presence of proteases and salts) are constructed and applied to the treatment of bacterial infections. In vitro studies are used to demonstrate that peptide nanoparticles NPs1 and NPs2 offer broad-spectrum antibacterial activity and desirable biocompatibility, and they retain their antibacterial ability in physiological salt environments. Peptide nanoparticles NPs1 and NPs2 can resist degradation under high concentrations of proteases. In vivo studies illustrate that the toxicity caused by peptide nanoparticles NPs1 and NPs2 is negligible, and these nanoparticles can alleviate systemic bacterial infections in mice and piglets. The membrane permeation mechanism and interference with the cell cycle differ from that of antibiotics and mean that the nanoparticles are at a lower risk of inducing drug resistance. Collectively, these advances may accelerate the development of peptide-based antibacterial nanomaterials and can be applied to the construction of supramolecular nanomaterials.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Sepsis , Animales , Antibacterianos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Ratones , Péptido Hidrolasas , Péptidos/farmacología , Porcinos
10.
J Hazard Mater ; 424(Pt B): 127494, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687999

RESUMEN

Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.


Asunto(s)
Plaguicidas , Agricultura , Animales , Contaminación Ambiental/prevención & control , Compuestos Organofosforados/toxicidad , Plaguicidas/análisis , Plaguicidas/toxicidad , Suelo
11.
Environ Sci Pollut Res Int ; 29(2): 2707-2717, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34378135

RESUMEN

Glyphosate-based herbicides (GBHs) are widely used worldwide. Glyphosate (GLP) is the main active component of GBHs. The presence of GBH residues in the environment has led to the exposure of animals to GBHs, but the mechanisms of GBH-induced nephrotoxicity are not clear. This study investigated the effects of GBHs on piglet kidneys. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) with an average weight of 12.24 ± 0.61 kg were randomly divided into four treatment groups (n=7 piglets/group) that were supplemented with Roundup® (equivalent to GLP concentrations of 0, 10, 20, and 40 mg/kg) for a 35-day feeding trial. The results showed that the kidneys in the 40-mg/kg GLP group suffered slight damage. Roundup® significantly decreased the activity of catalase (CAT) (P=0.005) and increased the activity of superoxide dismutase (SOD) (P=0.029). Roundup® increased the level of cystatin-C (Cys-C) in the plasma (linear, P=0.002 and quadratic, P=0.015). The levels of neutrophil gelatinase-associated lipocalin (NGAL) in plasma increased linearly (P=0.007) and quadratically (P=0.003) as the dose of GLP increased. The mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) in the 20-mg/kg GLP group was increased significantly (P<0.05). There was a significant increase in the mRNA levels of pregnenolone X receptor (PXR), constitutive androstane receptor (CAR), and uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) (P<0.05). Our findings found that kidney nuclear xenobiotic receptors (NXRs) may play an important role in defense against GBHs.


Asunto(s)
Herbicidas , Animales , Receptor de Androstano Constitutivo , Femenino , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Porcinos , Xenobióticos , Glifosato
12.
Environ Pollut ; 272: 115596, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243543

RESUMEN

At present, glyphosate (GLP) is the most produced and used herbicide in the world. With the large-scale use of glyphosate-based herbicides (GBHs), their toxic effects on animals and plants have increasingly become a concern. Based on the Codex Alimentarius Commission (CODEX) dose (20 mg kg-1) and the dose set by the government (40 mg kg-1), four experimental groups in which Roundup® (R) herbicide was added to the feed of weaned piglets at GLP concentrations of 0, 10, 20, and 40 mg kg-1 were designed. The results showed that R had no significant effect on the vulvar size or index of reproductive organs but that it could affect the tissue morphology and ultrastructure of the uterus and ovary. With the increase in GLP concentration, the activities of antioxidant enzymes [SOD (P < 0.05) and GPx (P = 0.002)] in the uterus showed significant increases. Compared with the control group, the content of hydrogen peroxide (H2O2) in the treatment groups increased significantly (P < 0.05), the malondialdehyde (MDA) content in the 10 mg kg-1 treatment group was significantly higher than that in the control group. We measured hypothalamic-pituitary-ovarian axis (HPOA) hormones and also found that GLP significantly increased luteinizing hormone-releasing hormone (LHRH), gonadotropin-releasing hormone (GnRH) and testosterone (T) content (P < 0.05) and decreased follicle-stimulating hormone (FSH) content (P < 0.05). In summary, although R does not affect the vulvar size or reproductive organ index of weaned piglets, it changes the morphology and ultrastructure of the uterus and ovaries, interferes with the synthesis and secretion of HPOA hormones, and causes changes in the balance of the antioxidant system of uterus. This study provided a theoretical basis for preventing reproductive system harm caused by GBHs.


Asunto(s)
Herbicidas , Ovario , Animales , Dieta , Femenino , Hormona Folículo Estimulante , Glicina/análogos & derivados , Hormona Liberadora de Gonadotropina , Herbicidas/toxicidad , Peróxido de Hidrógeno , Hormona Luteinizante , Porcinos , Glifosato
13.
J Agric Food Chem ; 68(17): 4830-4843, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32252520

RESUMEN

The goal of this study was to investigate the effects of early fecal microbial transfer (FMT) on the microflora of recipient piglets, where Yorkshire newborn piglets and Min sows (an indigenous pig breed in China) were used as the fecal recipients and donors, respectively, to reveal the changes in immunity and development-related functions of the intestinal mucosa driven by FMT. The recipient group was inoculated with fecal microbial fluids from days 1 to 10. On day 21, the relative abundance of the Proteobacteria was reduced; the concentrations of immunoglobulin M (IgM) and immunoglobulin G (IgG) in the jejunal mucosa, and that of IgG in the ileal mucosa of the recipient group, were increased (P < 0.05). On day 40, the relative abundance of the Firmicutes in the recipient group was increased, while that of Bacteroides was decreased. The concentrations of IgG and IgM in the ileal mucosa of the recipient group were increased. FMT protected the intestine by modulating the antimicrobial peptides of the intestinal mucosa (P < 0.05). The results of this study revealed that early FMT can improve the gut microbiota, intestinal mucosal immunity, and intestinal development-related functions of Yorkshire piglets.


Asunto(s)
Animales Recién Nacidos/inmunología , Trasplante de Microbiota Fecal , Inmunoglobulina G/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Animales , Animales Recién Nacidos/microbiología , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Yeyuno/inmunología , Yeyuno/microbiología , Masculino , Porcinos
14.
J Hazard Mater ; 387: 121707, 2020 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-31776084

RESUMEN

Glyphosate (GLP), the most widely used and productive pesticide worldwide, which safety and reliability gradually become a social concern. It is important to explore the toxic of GLP on the limitation level by governments on piglets and the potential role of hepatic CAR/PXR and Keap1-Nrf2 pathways in low levels of glyphosate detoxification. Compared with the control group, the production performance and organ index of GLP group showed no significant change. However, the liver GLP residue of 40 mg/kg group was significantly higher than the control group. We also found that the activity of ALP increased linearly and DBIL content increased quadratically. Furthermore, GLP could significantly increase SOD and GSH-Px and decrease T-AOC and CAT activities and significantly increase MDA and H2O2 contents (P < 0.05); however, the genes expression of Keap1/Nrf2 pathway was not affected. Gene expression of CAR/PXR pathway showed that GLP could significantly stimulate the expression of CAR, but it could not affect the expression of phase Ⅰ (CYP1A1, CYP1A2, CYP2E1, CYP2A19, CYP3A29), phase Ⅱ (UGT1A6, GSTA1, GSTA2) detoxification enzymes and transporters (MDR1, MRP2, P-gp). Our study showed that although 10-40 mg/kg GLP would inevitably cause some liver damage and dysfunction, it can self-alleviating the toxic effect of GLP.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Alimentación Animal , Animales , Receptor de Androstano Constitutivo , Femenino , Contaminación de Alimentos , Expresión Génica/efectos de los fármacos , Glicina/toxicidad , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Factor 2 Relacionado con NF-E2/metabolismo , Porcinos , Glifosato
15.
Ecotoxicol Environ Saf ; 187: 109846, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31677563

RESUMEN

At present, the public is paying more attention to the adverse effects of pesticides on human and animal health and the environment. Glyphosate is a broad-spectrum pesticide that is widely used in agricultural production. In this manuscript, the effects of diets containing glyphosate on intestinal morphology, intestinal immune factors, intestinal antioxidant capacity and the mRNA expression associated with the Nrf2 signaling pathway were investigated in weaned piglets. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) were randomly selected with an average weight of 12.24 ±â€¯0.61 kg. Weaned piglets were randomly assigned into 4 treatment groups and fed a basal diet supplemented with 0, 10, 20, and 40 mg/kg glyphosate for a 35-day feeding trial. We found that glyphosate had no effect on intestinal morphology. In the duodenum, glyphosate increased the activities of CAT and SOD (linear, P < 0.05) and increased the levels of MDA (linear and quadratic, P < 0.05). In the duodenum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and NQO1 (linear and quadratic, P < 0.05) and reduced the relative mRNA expression levels of GPx1, HO-1 and GCLM (linear and quadratic, P < 0.05). In the jejunum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and decreased the relative mRNA expression levels of GCLM (linear and quadratic, P < 0.05). Glyphosate increased the mRNA expression levels of IL-6 in the duodenum (linear and quadratic, P < 0.05) and the mRNA expression levels of IL-6 in the jejunum (linear, P < 0.05). Glyphosate increased the mRNA expression of NF-κB in the jejunum (linear, P = 0.05). Additionally, the results demonstrated that glyphosate linearly decreased the ZO-1 mRNA expression levels in the jejunum and the mRNA expression of claudin-1 in the duodenum (P < 0.05). In the duodenum, glyphosate increased the protein expression levels of Nrf2 (linear, P = 0.025). Overall, glyphosate exposure may result in oxidative stress in the intestines of piglets, which can be alleviated by enhancing the activities of antioxidant enzymes and self-detoxification.


Asunto(s)
Antioxidantes/metabolismo , Exposición Dietética/efectos adversos , Glicina/análogos & derivados , Intestino Delgado/efectos de los fármacos , Plaguicidas/toxicidad , Alimentación Animal , Animales , Exposición Dietética/análisis , Femenino , Glicina/toxicidad , Intestino Delgado/metabolismo , Intestino Delgado/patología , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Porcinos , Destete , Glifosato
16.
J Anim Sci ; 97(10): 4235-4241, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430375

RESUMEN

The objective of this study was to investigate the effects of diets supplemented with sodium stearoyl-2-lactylate (SSL), polyglycerol fatty acid ester (PGFE), and combined emulsifiers (0.02% SSL and 0.08% PGFE) on growth performance, nutrient digestibility, and plasma lipid profiles in weaned piglets and to further evaluate the possible effects of feeding exogenous emulsifiers on digestive enzyme activities and liver bile acid (BA) metabolism. Twenty-eight barrows (age at 35 d, Duroc × Landrace × Yorkshire) with an initial BW of 10.13 ± 0.16 kg were randomly assigned to 4 dietary treatment groups (7 pigs/treatment). Dietary treatment groups included the following: 1) basal diet (Control, CTR); 2) basal diet with 0.1% SSL (SSL); 3) basal diet with 0.1% PGFE (PGFE); and 4) basal diet with 0.08% PGFE+0.02% SSL (PG-SL). SSL diet increased ADG and ADFI of piglets during day 0 to 17 (P < 0.05) compared with the CTR treatment. Piglets fed emulsifier diets experienced a significant improvement in the digestibility of nutrients (DM, CP, ether extract, energy, calcium, and phosphorus) during the first 17 d (P < 0.05). The level of low-density lipoprotein cholesterol (LDL-C) was lower in the PGFE and PG-SL treatment groups than in the CTR treatment group (P < 0.05). Feeding emulsifier diets increased the lipase activity of the pancreas when compared with the CTR diet (P < 0.05). Moreover, the emulsifier diets significantly increased the mRNA expression of FXR (P < 0.05) and decreased the mRNA expression of CYP27A1 (P < 0.05) in the liver. In conclusion, the addition of emulsifiers improved nutrient digestibility and increased the mRNA expression of FXR BA receptors while inhibiting the mRNA expression of BA biosynthesis by CYP27A1 in weanling piglets.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Ácidos Grasos/administración & dosificación , Estearatos/administración & dosificación , Porcinos/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Dieta/veterinaria , Digestión , Emulsionantes/administración & dosificación , Femenino , Masculino , Nutrientes , Distribución Aleatoria , Porcinos/crecimiento & desarrollo , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...