Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399018

RESUMEN

A two-channel, time-wavelength interleaved photonic analog-to-digital converter (PADC) system with a sampling rate of 10.4 GSa/s was established, and a concise method for measuring and data correcting the channel sampling timing walk-off of PADCs for signal recovery was proposed. The measurements show that for the two RF signals of f1 = 100 MHz and f2 = 200 MHz, the channel sampling timing walk-off was 12 sampling periods, which results in an ENOB = -0.1051 bits for the 100 MHz directly synthesized signal, while the ENOB improved up to 4.0136 bits using shift synthesis. In addition, the peak limit method (PLM) and normalization processing were introduced to reduce the impacts of signal peak jitter and power inconsistency between two channels, which further improve the ENOB of the 100 MHz signal up to 4.5668 bits. All signals were analyzed and discussed in both time and frequency domains. The 21.1 GHz signal was also collected and converted using the established two-channel PADC system with the data correction method, combining the PLM, normalization, and shift synthesis, showing that the ENOB increased from the initial -0.9181 to 4.1913 bits, which demonstrates that our method can be effectively used for signal recovery in channel-interleaved PADCs.

2.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38138324

RESUMEN

The effects of optical sampling pulse power, RF power, and electronic back-end bandwidth on the performance of time- and wavelength-interleaved photonic analog-to-digital converter (PADC) with eight-channel 41.6 GHz pulses have been experimentally investigated in detail. The effective number of bits (ENOB) and peak-to-peak voltage (Vpp) of converted 10.6 GHz electrical signals were used to characterize the effects. For the 1550.116 nm channel with 5.2 G samples per second, an average pulse power of 0 to -10 dBm input to the photoelectric detector (PD) has been tested. The Vpp increased with increasing pulse power. And the ENOB for pulse power -9~-3 dBm was almost the same and all were greater than four. Meanwhile, the ENOB decreased either when the pulse power was more than -2 dBm due to the saturation of PD or when the pulse power was less than -10 dBm due to the non-ignorable noise relative to the converted weak signal. In addition, RF powers of -10~15 dBm were loaded into the Mach-Zehnder modulator (MZM). The Vpp increased with the increase in RF power, and the ENOB also showed an increasing trend. However, higher RF power can saturate the PD and induce greater nonlinearity in MZM, leading to a decrease in ENOB, while lower RF power will convert weak electrical signals with more noise, also resulting in lower ENOB. In addition, the back-end bandwidths of 0.2~8 GHz were studied in the experiments. The Vpp decreased as the back-end bandwidth decreased from 8 to 3 GHz, and remained nearly constant for the bandwidth between the Nyquist bandwidth and the subsampled RF signal frequency. The ENOB was almost the same and all greater than four for a bandwidth from 3 to 8 GHz, and gradually increased up to 6.5 as the back-end bandwidth decreased from the Nyquist bandwidth to 0.25 GHz. A bandwidth slightly larger than the Nyquist bandwidth was recommended for low costs and without compromising performance. In our experiment, the -3 to -5 dBm average pulse power, about 10 dBm RF power, and 3 GHz back-end bandwidth were recommended to accomplish both a high ENOB more than four and large Vpp. Our research provides a solution for selecting optical sampling pulse power, RF power, and electronic back-end bandwidth to achieve low-cost and high-performance PADC.

3.
Opt Express ; 31(26): 44515-44522, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178520

RESUMEN

Strictly uniform time interval between adjacent channels is a crucial requirement for the multi-wavelength interleaved (MWI) pulse sources, which difficult alignment can be easily solved by what we believe to be our novel method based on frequency-resolved optical gating (FROG). By utilizing highly precise measurements from FROG, which provide fully two-dimensional information of the pulses in time and frequency domain, we can intuitively identify the time mismatches between different channels in the MWI pulse sources. This enables us to directly align the timing of each channel with sub-picosecond resolution at the first time. MWI pulse sources with total repetition rate of 20.8 GHz (four wavelengths) and 41.6 GHz (eight wavelengths) are precisely aligned by the proposed method, this achievement will pave the way for advancements in photonic analog-digital converters (PADC), high-speed optical communications and so on.

4.
Opt Express ; 29(16): 25365-25376, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614869

RESUMEN

A practical direct-view scheme for generating arbitrary high-order cylindrical vector (HCV) beams by cascading vortex half-wave plates (VHPs) is presented. The combination of odd number 2n-1 VHPs for n≥1 can realize (m2n-1-m2n-2+…+m1)-order CV beams, in which m is the order number of VHP and the corresponding subscript 2n-1 represents the arrangement number of VHPs, and the cascading of even number 2n ones can obtain (m2n-m2n-1+…+m2-m1)-order CV beams. All 1-12 order CV beams, including the high-order anti-vortex CV (ACV) beams, are generated only by selectively cascading the VHPs with m=1, 3 and 8. The polarization properties of the generated HCV beams are investigated by measuring the corresponding Stokes parameters. It is experimentally demonstrated that arbitrary HCV beams are effectively achieved by the proposed method. The order numbers of CV beams can be greatly expanded by cascading limited types of VHPs.

5.
Micromachines (Basel) ; 12(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683303

RESUMEN

We designed a tellurite microstructure fiber (TMF) and proposed a broadband optical frequency comb generation scheme that was based on electro-optical modulation and cascaded sign-alternated dispersion TMF (CSAD-TMF). In addition, the influence of different nonlinear effects, the ultrashort pulse evolution in the CSAD-TMF with the anomalous dispersion (AD) zones and the normal dispersion (ND) zones were analyzed based on the generalized nonlinear Schrodinger equations (GNLSE) modelling. According to the simulations, when the input seed comb had a repetition rate of 20 GHz and had an input pulse peak power of 30 W, the generation scheme could generate optical frequency combs with a 6 dB spectral bandwidth spanning over 170 nm centered at 1550 nm. Furthermore, the generated combs showed good coherence in performance over the whole 6 dB spectral bandwidth. The highly coherent optical frequency combs can be used as high-repetition-rate, multi-wavelength light sources for various integrated microwave photonics and ultrafast optical signal processing applications.

6.
Opt Express ; 28(26): 39084-39092, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379466

RESUMEN

We report on the nonlinear characterizations of the titanium dioxide micro-ring resonators (TiO2 MRRs). By utilizing optimized fabrication processes, high quality factors (Q∼1.4 × 105) doubling that of the previous work are achieved here for TiO2 MRRs with high-confinement TiO2 waveguides. The four-wave mixing (FWM) experiment results with low and high signal power demonstrate that, the fabricated TiO2 MRRs can perform broadband (∼40 nm) wavelength conversion and cascaded FWMs. These achievements pave the way for key nonlinear photonic applications with TiO2 waveguides and provide an efficient platform for various integrated photonic devices.

7.
Opt Lett ; 45(18): 5012-5015, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932440

RESUMEN

Titanium dioxide (TiO2) microring resonators (MRRs) with high quality factors (Qs) are demonstrated by using a new, to the best of our knowledge, bottom-up fabrication method. Pattern platforms with a T-shaped cross section are first defined by etching a thin top layer of silicon nitride and a thick bottom layer of silica and partially undercutting the silica. Then, TiO2 is deposited on the platforms to form the TiO2 waveguides and devices. TiO2 MRRs with different bending radii, waveguide widths, and gaps in the bus waveguide are fabricated and measured. The intrinsic Q(Qint) is achieved to be ∼1.1×105 at the telecommunication wavelengths, corresponding to a bend waveguide loss of 3.9 dB/cm while the compact MRR with a radius of 10 µm can still sustain a Qint of ∼105. These results not only unfold the feasibilities of the proposed bottom-up method for fabricating TiO2 waveguides and MRRs with high Qs and compact footprints but also suggest a new approach for fabricating waveguides in other materials, of which direct etching is not easily accessible.

8.
Opt Express ; 25(14): 15687-15698, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789082

RESUMEN

In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

9.
Opt Express ; 25(7): 7392-7401, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28380861

RESUMEN

Target images recorded with range-gated laser imaging systems and conventional passive imaging systems through rapidly changing turbid mediums inevitably suffer from inhomogeneous degradations. Consequently, this makes the images partly or entirely different from their true targets and eventually has adverse effects on target identification. To date, the inhomogeneous degradations are still not finely eliminable despite utilizing adaptive optical methods and pure mathematical signal improvement techniques. Herein, we demonstrate an image restoration method involving intrinsic physical evolution of light beams based on the backscattering images of a turbid medium. The corresponding mathematical signal processing algorithms are applied for restoring the true target images in the presence of rapidly changing inhomogeneous degradations. This technique would benefit target imaging through moving cloud/mist in air and flowing muddy masses under water.

10.
Appl Opt ; 55(14): 3740-5, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168285

RESUMEN

By orthogonally dual-shifting the air-hole rows in the triangular photonic crystal waveguide, a novel finely engineered slow light silicon photonic crystal waveguide is designed for higher-order temporal solitons and ultrashort temporal pulse compression with a large fabrication tolerance. The engineering of dispersion provides the waveguide with a wide wavelength range with only low anomalous dispersion covering, which makes the compression ratio wavelength-independent and stable even under ultralow input pulse energy. The simulation results are based on nonlinear Schrödinger equation modeling, which demonstrates that the input picosecond pulses in the broad wavelength range with ultralow pJ pulse energy can be stably compressed by a factor of 6 to higher-order temporal solitons in a 250 µm short waveguide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA