Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134520, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718512

RESUMEN

Polyethylene (PE) microplastic, which is detected in various environmental media worldwide, also inevitably enters wastewater treatment plants, which may have an impact on anaerobic processes in wastewater treatment. In this work, the effect of PE microplastics on anaerobic sulfur transformation was explored. Experimental results showed that PE microplastics addition at 0.1%- 0.5% w/w promoted H2S production by 14.8%-27.4%. PE microplastics enhanced the release of soluble organic sulfur and inorganic sulfate, and promoted the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Mechanism analysis showed that PE microplastics increased the content of electroactive components (e.g., protein and humic acids) contained in extracellular polymeric substances (EPS). In particular, PE microplastics increased the proportion and the dipole moment of α-helix, an important component involved in electron transfer contained in extracelluar protein, which provided more electron transfer sites and promoted the α-helix mediated electron transfer. These enhanced the direct electron transfer ability of EPSs, which might explain why PE microplastics facilitated the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Correspondingly, metagenomic analysis revealed that PE microplastics increased the relative abundance of S2- producers (e.g., Desulfobacula and Desulfonema) and the relative abundance of functional genes involved in anaerobic sulfur transformation (e.g., PepD and cysD), which were beneficial to H2S production in anaerobic system.


Asunto(s)
Microplásticos , Polietileno , Azufre , Microplásticos/toxicidad , Anaerobiosis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Sulfatos , Biodegradación Ambiental
2.
Environ Sci Technol ; 58(21): 9272-9282, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749055

RESUMEN

Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.


Asunto(s)
Electrólisis , Anaerobiosis , Aguas del Alcantarillado/microbiología , Metano/metabolismo , Carbanilidas/farmacología
3.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648493

RESUMEN

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Asunto(s)
Azufre , Azufre/metabolismo , Anaerobiosis , Sulfuro de Hidrógeno/metabolismo , Fenoles/metabolismo , Compuestos de Bencidrilo/metabolismo
4.
Water Res ; 250: 121024, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113597

RESUMEN

Benzethonium chloride (BZC) is viewed as a promising disinfectant and widely applied in daily life. While studies related to its effect on waste activated sludge (WAS) anaerobic fermentation (AF) were seldom mentioned before. To understand how BZC affects AF of WAS, production of short chain fatty acids (SCFAs), characteristics of WAS as well as microbial community were evaluated during AF. Results manifested a dose-specific relationship of dosages between BZC and SCFAs and the optimum yield arrived at 2441.01 mg COD/L with the addition of 0.030 g/g TSS BZC. Spectral results and protein secondary structure variation indicated that BZC denatured proteins in the solid phase into smaller proteins or amino acids with unstable structures. It was also found that BZC could stimulate the extracellular polymeric substances secretion and reduce the surface tension of WAS, leading to the enhancement of solubilization. Beside, BZC promoted the hydrolysis stage (increased by 7.09 % to 0.030 g/g TSS BZC), but inhibited acetogenesis and methanogenesis stages (decreased by 6.85 % and 14.75 % to 0.030 g/g TSS BZC). The microbial community was also regulated by BZC to facilitate the enrichment of hydrolytic and acidizing microorganisms (i.e. Firmicutes). All these variations caused by BZC were conducive to the accumulation of SCFAs. The findings contributed to investigating the effect of BZC on AF of WAS and provided a new idea for the future study of AF mechanism.


Asunto(s)
Bencetonio , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Aguas del Alcantarillado/química , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno
5.
J Hazard Mater ; 452: 131305, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37002999

RESUMEN

Free ammonia (FA), the unionized form of ammonium, is presented in anaerobic fermentation of waste activated sludge (WAS) at high levels. However, its potential role in sulfur transformation, especially H2S production, during WAS anaerobic fermentation process was unrecognized previously. This work aims to unveil how FA affects anaerobic sulfur transformation in WAS anaerobic fermentation. It was found that FA significantly inhibited H2S production. With an increase of FA from 0.04 to 159 mg/L, H2S production reduced by 69.9%. FA firstly attacked tyrosine-like proteins and aromatic-like proteins in sludge EPSs, with CO groups being responded first, which decreased the percentage of α-helix/(ß-sheet + random coil) and destroyed hydrogen bonding networks. Cell membrane potential and physiological status analysis showed that FA destroyed membrane integrity and increased the ratio of apoptotic and necrotic cells. These destroyed sludge EPSs structure and caused cell lysis, thus strongly inhibited the activities of hydrolytic microorganisms and sulfate reducing bacteria. Microbial analysis showed that FA reduced the abundance of functional microbes (e.g., Desulfobulbus and Desulfovibrio) and genes (e.g., MPST, CysP, and CysN) involved in organic sulfur hydrolysis and inorganic sulfate reduction. These findings unveil an actually existed but previously overlooked contributor to H2S inhibition in WAS anaerobic fermentation.


Asunto(s)
Amoníaco , Compuestos de Amonio , Amoníaco/metabolismo , Aguas del Alcantarillado/química , Anaerobiosis , Fermentación , Ácidos Grasos Volátiles/química
6.
Sci Total Environ ; 880: 163025, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966824

RESUMEN

The presence of surfactants in waste activated sludge (WAS) system is generally regarded as beneficial to sludge treatment such as enhancing sludge dewatering and improving value-added fermentation products generation. However, in this study, it was firstly found that sodium dodecylbenzene sulfonate (SDBS, a typical surfactant) obviously increased toxic hydrogen sulfide (H2S) gas production from WAS anaerobic fermentation at environmentally relevant concentrations. Experimental results showed that H2S production from WAS significantly increased from 53.24 × 10-3 to 111.25 × 10-3 mg/g volatile suspended solids (VSS) when SDBS level increased from 0 to 30 mg/g total suspended solid (TSS). It was found that SDBS presence destroyed WAS structure and enhanced sulfur containing organics release. SDBS reduced the proportion of α-helix structure, damaged disulfide bridges and protein conformation, and effectively destroyed protein structure. SDBS promoted sulfur containing organics degradation and provided more readily hydrolyzed micro-molecule organics for sulfide production. Microbial analysis showed that SDBS addition enhanced the abundance of functional genes encoding protease, ATP-binding cassette transporters, and amino acids lyase, enhanced the activities and abundance of hydrolytic microbes, thus increased sulfide production from the hydrolysis of sulfur containing organics. Compared with the control, 30 mg/g TSS SDBS increased organic sulfurs hydrolysis and amino acids degradation by 47.1 % and 63.5 %, respectively. Key genes analysis further showed that SDBS addition promoted sulfate transport system and dissimilatory sulfate reduction. SDBS presence also lowered fermentation pH, promoted the chemical equilibrium transformation of sulfide, thus increased H2S gas release.


Asunto(s)
Sulfuro de Hidrógeno , Microbiota , Fermentación , Aguas del Alcantarillado/química , Tensoactivos/química , Ácidos Grasos Volátiles , Anaerobiosis , Sulfuros , Lipoproteínas , Azufre , Aminoácidos , Sulfatos , Concentración de Iones de Hidrógeno , Hidrógeno
7.
Water Res ; 221: 118742, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752095

RESUMEN

Rhamnolipid (RL), one representative biosurfactant, is widely regarded as an economically feasible and environmentally beneficial additive to improve fermentation efficiency and resource recovery from waste activated sludge (WAS). However, its potentially detrimental impact on WAS fermentation such as H2S generation was overlooked previously. This study therefore aims to fill the gap through exploring whether and how the presence of RL affects H2S generation from WAS anaerobic fermentation. Experimental results showed that when RL increased from 0 to 40 mg/g total suspended solids (TSS), the cumulative H2S yield enhanced from 323.6 ×  10-4 to 620.3 ×  10-4 mg/g volatile suspended solids (VSS). Mechanism analysis showed that RL reduced WAS surface tension, which benefited transformations of organic sulfurs (e.g., aliphatic-S and sulfoxide) and inorganic sulfate from solid to liquid phase. The presence of RL not only reduced the ratio of α-helix/(ß-sheet + random coil) and damaged the hydrogen bonding networks of organic sulfurs but also promoted substrate surface charges and cell membrane permeability. These facilitated the contact between hydrolase and organic sulfurs, thereby increasing sulfide production from organic sulfurs hydrolysis. Further investigations showed that RL promoted the expression of key genes (e.g., aprA/B and dsrA/B) involved in the dissimilatory sulfate reduction, which accelerated the reaction of adenosine 5'-phosphosulfate (APS)→ sulfite→ sulfide. Meanwhile, RL inhibited the corresponding key genes such as CysH, and Sir, responsible for assimilatory sulfate reduction (APS→3'-phosphoadenosine-5'phosphosulfate→organosulfur), which reduced substrate competition in favor of H2S production from dissimilatory sulfate reduction. Besides, RL decreased the fermentation pH, which benefited the transformation of HS- to H2S.


Asunto(s)
Aguas del Alcantarillado , Sulfatos , Anaerobiosis , Ácidos Grasos Volátiles/metabolismo , Fermentación , Glucolípidos , Concentración de Iones de Hidrógeno , Sulfuros
8.
Sci Total Environ ; 844: 156991, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35772535

RESUMEN

Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.


Asunto(s)
Ácido Peracético , Aguas del Alcantarillado , Anaerobiosis , Ácidos Grasos Volátiles , Fermentación , Hidrógeno , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado/microbiología
9.
Sci Total Environ ; 824: 153865, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176358

RESUMEN

Photocatalysis has been considered a promising method for environmental purification. However, powder nanomaterials are not suitable for large-scale application due to the limit of low recyclability and energy-intensive operation. Integrating and depositing powder photocatalysts on monolithic substrates may solve these issues. In this study, a ZIF-8 photocatalyst membrane and its derived product (ZnS photocatalyst membrane) was constructed by a facile in-situ treatment of cellulose-based substrate (take filter paper as an example). Both the two nanomaterials were confirmed to be tightly anchored to filter paper with the aid of chemical interaction. Under visible light irradiation, excellent dynamic-flow photocatalytic removal efficiencies of methylene blue (MB) degradation (97% within 80 min, k = 0.042 ± 0.002 min-1) and Cr(VI) reduction (100% within 60 min, k = 0.116 ± 0.007 min-1) were achieved by the prepared ZIF-8 photocatalyst membrane and its derived ZnS photocatalyst, respectively. Considering the high MB adsorption capacity and facile regeneration process of ZIF-8 photocatalyst membrane, the adsorption-degradation strategy was promising for its universal applications. The MB degradation pathway and photocatalytic mechanisms were also explored. Ultimately, a comprehensive discussion on the advantages and implications of prepared photocatalyst membranes for photocatalytic water treatment was rationally proposed. This study provided a promising method for water decontamination and demonstrated the significant superiority of monolithic membrane for photocatalytic water treatment.


Asunto(s)
Descontaminación , Purificación del Agua , Adsorción , Catálisis , Azul de Metileno , Polvos , Purificación del Agua/métodos
10.
Sci Total Environ ; 811: 151413, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34774636

RESUMEN

Poly aluminum chloride (PAC) and poly ferric sulfate (PFS) are widely used in wastewater treatment and sludge dewatering, resulting in their amounts being accumulated substantially in waste activated sludge (WAS). Till now, however, little information about their influence on WAS digestion is available. This work therefore aims to provide insights into how PAC and PFS affect sludge anaerobic digestion. The experimental results showed that PFS's inhibition to methane production was much severer than PAC, in control reactor (0 mg Al or Fe /g TSS), the maximum cumulative methane production was 152.99 ± 7.18 mL/g VSS, when flocculants concentration increased to 30 mg Al/g TSS or 30 mg Fe/g TSS, the yields decreased to 129.54 ± 6.18 mL/g VSS and 89.52 ± 4.82 mL/g VSS respectively. Mechanism explorations exhibited that protein in WAS could bond with flocculants, which would inhibit protein bioconversion. It was also observed that the apparent activation energy (AAE) of organic solubilisation of PAC and PFS-contained sludge were increased by 38.58% and 18.67% respectively. Meanwhile, compared to the PFS, PAC led to more serious suppression of hydrolysis and acidogenesis processes, with propionic acid used as substrate, PFS inhibit methanogenesis more severely than PAC. Illumina MiSeq sequencing analyses showed that the number of sulfate-reducing bacteria (SRB) enriched obviously in PFS reactor. The results revealed that although PFS reduced methane production more severely than PAC, the reduction was mainly enforced by the activity of SRB but not organic enmeshment. Furthermore, PAC severely suppresses acetotrophic methanogens but PFS depress hydrogenotrophic methanogenesis microorganism mainly. Additionally, malodor control and dewaterability enhancement of digested sludge can be realized with PAC existence. The finding obtained in this study would provide insights into the PFS or PAC-involved sludge anaerobic digestion system and might support the important implication for further manipulate WAS treatment in the future.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Cloruro de Aluminio , Anaerobiosis , Compuestos Férricos , Metano , Eliminación de Residuos Líquidos
11.
Sci Total Environ ; 799: 149383, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371398

RESUMEN

Sodium dodecylbenzene sulfonate (SDBS), a typical surfactant being widely used in various applications, was highly accumulated in waste activated sludge. To date, however, its effect on hydrogen production from dark fermentation of sludge has not been documented. The work therefore aimed to explore whether and how SDBS affects hydrogen production. Experimental results showed that with an increase of SDBS from 0 to 30 mg/g TSS, the maximal hydrogen yield increased from 2.47 to 10.73 mL/g VSS (without any treatment) and from 13.05 to 23.51 mL/g VSS (under free ammonia pretreatment). Mechanism exploration showed that SDBS lowered surface tension, facilitated organics transfer from solid to liquid. SDBS also destroyed hydrogen bonding networks of protein, promoted macromolecular organics degradation. Besides, SDBS improved the electric charge in organics, then weakened the mutual repulsion, improved adsorb, interact and promoted the availability of reaction sites between anaerobes and organic substances. Enzyme activity analysis showed that SDBS not only improved the activities of enzymes related to hydrolysis and acidification processes, but also inhibited the activities of homoacetogens and methanogens. SDBS presence lowered sludge ORP and created an environment which was helpful to the growth of butyric-type bacteria, thus enhanced butyric-type fermentation, which contributed hydrogen production largely. Microbial community analysis revealed that SDBS existence affected distributions of microbial populations, and increased the abundances of hydrogen producing microorganisms (e.g., unclassified_f_Synergistaceae). PICRUSt2 analysis showed that SDBS reduced hydrogenotrophic methanogens activity for its inhibitory effect on the biotransformation of 5,10-Methenyl-THMPT to 5-methyl-THMPT.


Asunto(s)
Hidrógeno , Aguas del Alcantarillado , Derivados del Benceno , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno , Sodio
12.
Chemosphere ; 284: 131386, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34323787

RESUMEN

Porous metal-organic frameworks (MOFs) with visible-light response have attracted much attention in the field of environmental purification and solar energy conversion. In this study, MIL-100(Fe) was modified with Bi2WO6 nanosheets by a facile hydrothermal method to fabricate a photocatalyst with direct Z-scheme heterojunction. When treating the tetracycline (TC) solution under natural sunlight, 12 wt%MIL-100(Fe)/Bi2WO6 obtained the highest apparent rate constant of (6.59 ± 0.52)✕10-3 L mg-1 min-1, which was 16.1 and 3.9 times than that of pristine MIL-100(Fe) and Bi2WO6, respectively. In addition to explore the feasibility of sunlight-activated MIL-100(Fe)/Bi2WO6 to remove TC under various conditions, the degradation intermediates and their possible transformation pathway were provided with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. The results of Escherichia coli culture demonstrated that the biotoxicity variation of TC solution would first increase and then decrease with the photodegradation time. Ultimately, based on the results of bandgap calculation, radicals trapping and charge flow tracking experiments, the direct Z-scheme heterojunction between MIL-100(Fe) and Bi2WO6 nanosheets was confirmed and the photocatalytic mechanism for TC degradation was rationally proposed. This work enriched MOFs-based heterojunction photocatalysts and provided a promising method to eliminate hazardous TC from aqueous solution.


Asunto(s)
Estructuras Metalorgánicas , Antibacterianos , Catálisis , Luz Solar , Tetraciclina
13.
Water Res ; 199: 117198, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984590

RESUMEN

This work proved an efficient method to significantly increase methane production from anaerobic digestion of WAS. This method is to reflux proper of digestion liquid into waste activated sludge pretreatment unit (pH 9.5 for 24 h). The yield of maximum methane improved between 174.2 ± 7.3 and 282.5 ± 14.1 mL/g VSS with the reflux ratio of digestion liquid increasing from 0% to 20%. It was observed that the biodegradable organics in the digestion liquid did not affect the biological processes related to anaerobic digestion but increased methane production through reutilization. The ammonium in the digestion liquid was the main contributor to the increase in methane production via promoting sludge solubilization, but refractory organics were the major inhibitors to anaerobic digestion. It should be emphasized that the metal ions present in the digestion liquid were beneficial rather than harmful to the biological processes in the anaerobic digestion, which may be connected with the fact that certain metal ions were involved in the expression and activation of key enzymes. In addition, it was found that anaerobes in digestion liquid were another potential contributor to the enhanced anaerobic digestion.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Digestión , Metano
14.
Sci Total Environ ; 780: 146628, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030306

RESUMEN

When temperate phages and their hosts have a consistent interest, they are considered reciprocal. Based on the bacterium-phage collaboration, lysogenic phage treatment is a promising method to resist pollution through lysogenic phage reshaping indigenous microbial communities to maintain their ecological function under environmental stress. However, the potential factors affecting the establishment of bacterium-phage collaboration are still poorly understood. Here, lysogenic phages carrying arsenic biotransformation genes (ABGs) were induced from the enriched arsenic-resistant microorganisms (from arsenic-contaminated sites). The diversity analysis of viral arsC and arsM demonstrated that arsM tended to proliferate rapidly under high arsenic levels, and the transduction of arsM might be the key to lysogenic phages to help the hosts relieve the stress of high arsenic. Microcosm experiments confirmed that with the increase of the As(III) content (0% to 50%, of 200 mg/kg total arsenic) in the soil, inoculation of lysogenic phages with both arsC and arsM resulted in more transduction of arsM (0.06 ± 0.007 to 0.23 ± 0.024 per 16S rRNA) among soil microorganisms. In contrast, inoculation of lysogenic phages carrying the only arsC transduces more arsC (0.12 ± 0.037 to 0.315 ± 0.051 per 16S rRNA) compare with the control. This article confirmed that different arsenic species proportions and different viral gene compositions could change the abundance of ABGs in the soil microbe, which might provide basic knowledge for further understanding of arsenic pollution control mediated by lysogenic phage.


Asunto(s)
Arsénico , Bacteriófagos , Bacteriófagos/genética , Biotransformación , Genes Virales , ARN Ribosómico 16S/genética
15.
Bioresour Technol ; 316: 123947, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32769002

RESUMEN

Deterioration of anaerobic fermentation can occur with the presence of grease in food waste, but little information on eliminating this deterioration is currently available. In this study, it was found that the presence of 10 g/L grease decreased SCFAs production from 16.97 to 13.32 g COD/L and prolonged the optimal fermentation time to 7 days, but could be respectively recovered to 39.10 g COD/L and 4 days with 0.02 mg/g VS (volatile solids) calcium peroxide addition. Mechanism investigations indicated that calcium peroxide facilitated biodegradable organics release and improved grease degradation, thereby providing enough nutrients and better growth environments to microbes for SCFAs-producing, which could be further supported by the elevated enzymes activities responding to hydrolysis and acidification process. Further investigations revealed that among the main derivates of calcium peroxide, OH- and Ca2+ played vital role in SCFAs production promotion, O2- and OH radicals were the main contributors to grease degradation.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno , Hidrólisis , Peróxidos , Aguas del Alcantarillado
16.
J Hazard Mater ; 392: 122336, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32105958

RESUMEN

In this study, long-term experiments were performed under synthetic wastewater conditions to evaluated the potential impacts of norfloxacin (NOR) (10, 100 and 500 µg/L) on enhanced biological phosphorus removal (EBPR). Experimental result showed that long-term exposure to 10 µg/L NOR induced negligible effects on phosphorus removal. The presence of 100 µg/L NOR slightly decreased phosphorus removal efficiency to 94.41 ± 1.59 %. However, when NOR level further increased to 500 µg/L, phosphorus removal efficiency was significantly decreased from 97.96 ± 0.8 5% (control) to 82.33 ± 3.07 %. The mechanism study revealed that the presence of 500 µg/L NOR inhibited anaerobic phosphorus release and acetate uptake as well as aerobic phosphorus uptake during long-term exposure. It was also found that 500 µg/L NOR exposure suppressed the activity of key enzymes related to phosphorus removal but promoted the transformations of intracellular polyhydroxyalkanoate and glycogen. Microbial analysis revealed that that the presence of 500 µg/L NOR reduced the abundances of polyphosphate accumulating organisms but increased glycogen accumulating organisms, as compared the control.


Asunto(s)
Antibacterianos , Reactores Biológicos , Norfloxacino , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Glucógeno/metabolismo , Polifosfatos/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales
17.
Chemosphere ; 247: 125804, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31931311

RESUMEN

Fe(II)/persulfate process has been proven to be a promising technique for disintegrating sludge, while during the Fe(II)/persulfate treatment the direct information about the variation of extracellular polymeric substances (EPS) properties, which is a key factor affecting sludge dewatering, is still lacked. In this work, different dosages of Fe(II)/persulfate were employed to treat EPS fractions extracted from waste activated sludge. The experiment results showed that EPS fractions were modified by Fe(II)/persulfate process. An oxidation/flocculation process was raised to unveil how Fe(II)/persulfate modified EPS fractions: Firstly, SO4- and OH were formed by chemical reactions of Fe(II) activating persulfate and radical interconversion, respectively. Then these species nonselectively fragmented EPS fractions through decomposing their components, which facilitated decrement of the hydrophilic components and high/mid molecular weight of organics in EPS fractions. Furthermore, these radicals transformed the secondary structure of EPS proteins by affecting the hydrogen bonds at specific positions and inducing the cleavage of the S-S bonds in cysteine residues of proteins, which led to loose layout of protein molecules and thus increased exposure of the hydrophobic groups hidden in EPS protein molecules. Secondly, Fe(III), i.e., the oxidation product of Fe(II), assembled the ruptured colloids particles through lessening electronegativity. Consequently, Fe(II)/persulfate process elevated the flocculability and hydrophobicity of EPS fractions, which would improve physicochemical and rheological properties of sludge to facilitate its dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/química , Compuestos Ferrosos/química , Aguas del Alcantarillado/química , Floculación , Radicales Libres/química , Oxidación-Reducción , Sulfatos/química , Eliminación de Residuos Líquidos/métodos
18.
Sci Total Environ ; 707: 136105, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31874393

RESUMEN

Alkaline pretreatment was demonstrated to be effective in the enhancement of hydrogen production. However, the sludge solubilization rate of alkaline pretreatment is still limited. This study reports a new strategy of K2FeO4 + pH 9.5 for sludge mesophilic anaerobic fermentation. Experimental results showed that the combination of K2FeO4/pH 9.5 pretreatment had a greater hydrogen yield than the individual K2FeO4 and pH 9.5. The maximum hydrogen yield was 19.2 mL per gram volatile suspended solids (VSS) under the optimal condition (0.02 g per gram total suspended solids K2FeO4 + pH 9.5). Kinetic analysis showed that the highest hydrogen production potential of 19.9 mL/g VSS was obtained in the combined reactor, which well fitted the first-order kinetic model (R2 = 0.9925). Besides, the fermentation type was mainly acetic and butyric in the combined reactor, which contributed to hydrogen production. Further analyses showed that the combined pretreatment reduced hydrogen sulfide yield, providing an environmentally friendly method to sludge treatment.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Fermentación , Hidrógeno , Concentración de Iones de Hidrógeno , Compuestos de Hierro , Cinética , Compuestos de Potasio
19.
Water Res ; 169: 115249, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706128

RESUMEN

The increasing use of perfluorooctanoic acid (PFOA) raises concerns about its potential toxicity to the environment. However, the interaction between PFOA and aerobic granular sludge has never been documented. This work therefore aims to provide such support through investigating the fate of PFOA at environmentally relevant levels in aerobic granular sludge systems and its impact on aerobic granular sludge. Experimental results showed that 32.0%∼36.4% of wastewater PFOA was removed by aerobic granular sludge in stable operation when PFOA concentration was ranged from 0.1 to 1.0 mg/L. Mass balance analyses and X-ray photoelectron spectroscopy survey scan revealed that the removal of PFOA was dominated by adsorption rather than biodegradation, and sorption kinetic analysis indicated that inhomogeneous multilayer adsorption was responsible for this removal. The adsorbed PFOA deteriorated the settleability of granular sludge and biological nitrogen and phosphorus removal significantly. Experimental results showed that 1.0 mg/L PFOA inhibited anaerobic phosphate release, aerobic phosphate uptake, nitrate reduction, and nitrite reduction processes by 60%, 50%, 13.1%, and 5.8%, respectively. It was observed that PFOA induced large amounts of filamentous villus growing on the surface and increased the extracellular polymeric substances of granular sludge. Fourier-transform infrared spectra and X-ray photoelectron spectroscopy spectrum showed that several function groups in extracellular polymeric substances such as hydroxyl groups, amides and polysaccharides were affected by PFOA. It was also found that PFOA inhibited the cyclic transformations of polyhydroxyalkanoates and glycogen. Microbial community analyses showed that PFOA decreased the abundances of Nitrosomonas, Nitrospira, Accumulibacter, and other function microbes such as Rhodospirillaceae, Thauera, and Azoarcus.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aerobiosis , Reactores Biológicos , Caprilatos , Fluorocarburos , Cinética , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...