Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7916, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036537

RESUMEN

MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.


Asunto(s)
Músculo Esquelético , Obesidad , Humanos , Masculino , Animales , Ratones , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Homeostasis , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo
2.
Cell Metab ; 35(4): 711-721.e4, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019081

RESUMEN

Metabolism is fundamental to life, but measuring metabolic reaction rates remains challenging. Here, we applied C13 fluxomics to monitor the metabolism of dietary glucose carbon in 12 tissues, 9 brain compartments, and over 1,000 metabolite isotopologues over a 4-day period. The rates of 85 reactions surrounding central carbon metabolism are determined with elementary metabolite unit (EMU) modeling. Lactate oxidation, not glycolysis, occurs at a comparable pace with the tricarboxylic acid cycle (TCA), supporting lactate as the primary fuel. We expand the EMU framework to track and quantify metabolite flows across tissues. Specifically, multi-organ EMU simulation of uridine metabolism shows that tissue-blood exchange, not synthesis, controls nucleotide homeostasis. In contrast, isotopologue fingerprinting and kinetic analyses reveal the brown adipose tissue (BAT) having the highest palmitate synthesis activity but no apparent contribution to circulation, suggesting a tissue-autonomous synthesis-to-burn mechanism. Together, this study demonstrates the utility of dietary fluxomics for kinetic mapping in vivo and provides a rich resource for elucidating inter-organ metabolic cross talk.


Asunto(s)
Carbono , Glucosa , Animales , Ratones , Glucosa/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Ácido Láctico/metabolismo , Lípidos
3.
Hepatol Commun ; 6(10): 2640-2653, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35861547

RESUMEN

Both iron overload and iron deficiency have been reported in obesity and metabolic syndromes. Due to the presence of multiple intracellular iron pools and the dynamic nature of iron mobilization and use, the actual status and contribution of free and metabolically active iron toward metabolic syndrome remain to be established. The discovery of nuclear receptor coactivator 4 (NCOA4) as a ferritinophagy receptor provides an opening to address the connection between iron and metabolic diseases. This study aims to specifically dissect the role of hepatic ferritinophagy in lipid metabolism and hepatic steatosis. We conducted a series of Ncoa4 gain- and loss-of-function experiments to examine how ferritinophagy affects lipid metabolism through phenotypic and lipidomic analyses both in vitro and in vivo. We show that ferritinophagy is required to release iron from ferritin cages for biological use, and is induced by lipid loading in vitro and during the development of obesity in vivo. Ncoa4 knockdown impairs mitochondrial morphology and reduces palmitate-induced lipid droplet formation in cultured cells and the development of hepatic steatosis in obese mice models. Importantly, the effect of Ncoa4 deficiency on mitochondrial morphology and lipid accumulation is specifically linked to lipidomic reductions in unsaturated fatty acid content in triglycerides and cardiolipins, and an external supply of unsaturated fatty acids reverses these phenotypes. Conclusion: This study shows that ferritinophagy-derived iron supports fatty acid desaturation and the synthesis of unsaturated fatty acid-rich lipids to reduce lipotoxicity. However, the continuous activation of ferritinophagy contributes to the development of hepatic steatosis and liver damage in obesity.


Asunto(s)
Hígado Graso , Coactivadores de Receptor Nuclear , Animales , Cardiolipinas , Ácidos Grasos , Ácidos Grasos Insaturados , Ferritinas/genética , Hierro/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Obesidad , Palmitatos , Triglicéridos
4.
Cell Rep ; 36(10): 109659, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496251

RESUMEN

The principles guiding the diurnal organization of biological pathways remain to be fully elucidated. Here, we perturb the hepatic transcriptome through nutrient regulators (high-fat diet and mTOR signaling components) to identify enduring properties of pathway organization. Temporal separation and counter-regulation between pathways of energy metabolism and inflammation/proliferation emerge as persistent transcriptome features across animal models, and network analysis identifies the G0s2 and Rgs16 genes as potential mediators at the metabolism-inflammation interface. Mechanistically, G0s2 and Rgs16 are sequentially induced during the light phase, promoting amino acid oxidation and suppressing overall mitochondrial respiration. In their absence, sphingolipids and diacylglycerides accumulate, accompanied by hepatic inflammation and hepatocyte proliferation. Notably, the expression of G0s2 and Rgs16 is further induced in obese mouse livers, and silencing of their expression accentuates hepatic fibrosis. Therefore, diurnal regulation of energy metabolism alleviates inflammatory and proliferative stresses under physiological and pathological conditions.


Asunto(s)
Hepatocitos/metabolismo , Inflamación/patología , Hígado/metabolismo , Fosforilación Oxidativa , Animales , Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Hígado Graso/metabolismo , Hígado Graso/patología , Inflamación/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Obesos , Obesidad/metabolismo
5.
Sci Bull (Beijing) ; 66(13): 1330-1341, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654155

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer and essential for metabolism in malignancies, but its regulation and modulation in cancer cells remain poorly understood. Here, using large-scale functional screening, we identified a tumor-associated and broadly expressed oncogenic long noncoding RNA LINC00973. Notably, knocking down LINC00973 significantly inhibits the proliferation of multiple types of cancer cells and reduces tumor growth in vivo. Mechanistically, LINC00973 directly binds to lactate dehydrogenase A (LDHA), an essential glycolytic enzyme, and enhances its enzymatic activity, thereby promoting glycolysis. Clinically, high expression of LINC00973 is significantly associated with poor prognosis in many types of human cancers. This work demonstrates that LINC00973 modulates cancer-specific regulation of the Warburg effect, and may represent a potential target for broad-acting anti-cancer therapies.

6.
Cell Metab ; 32(4): 605-618.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32818435

RESUMEN

The surge in fructose consumption is a major factor behind the rapid rise of nonalcoholic fatty liver disease in modern society. Through flux and genetic analyses, we demonstrate that fructose is catabolized at a much higher rate than glucose, and triose kinase (TK) couples fructolysis with lipogenesis metabolically and transcriptionally. In the absence of TK, fructose oxidation is accelerated through the activation of aldehyde dehydrogenase (ALDH) and serine biosynthesis, accompanied by increased oxidative stress and fructose aversion. TK is also required by the endogenous fructolysis pathway to drive lipogenesis and hepatic triglyceride accumulation under high-fat diet and leptin-deficient conditions. Intriguingly, a nonsynonymous TK allele (rs2260655_A) segregated during human migration out of Africa behaves as TK null for its inability to rescue fructose toxicity and increase hepatic triglyceride accumulation. Therefore, we posit TK as a metabolic switch controlling the lipogenic potential of fructose and its dietary tolerance.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fructosa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Células Cultivadas , Lipogénesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia
7.
Cell Rep ; 30(6): 1835-1847.e9, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049014

RESUMEN

Nutrients stimulate the anabolic synthesis of proteins and lipids, but selective insulin resistance in obesity biases the anabolic program toward lipogenesis. Here, we report the identification of a DNAJB9-driven program that favors protein synthesis and energy production over lipid accumulation. We show there are two pools of DNAJB9 cochaperone. DNAJB9 in the ER lumen promotes the degradation of the lipogenic transcription factor SREBP1c through ERAD, whereas its counterpart on the ER membrane promotes the assembly of mTORC2 in the cytosol and stimulates the synthesis of proteins and ATP. The expression of Dnajb9 is induced by nutrients and downregulated in the obese mouse liver. Restoration of hepatic DNAJB9 expression effectively improves insulin sensitivity, restores protein synthesis, and suppresses food intake, accompanied by reduced hepatic steatosis and adiposity in multiple mouse models of obesity. Therefore, targeting the anabolic balance may provide a unique opportunity to tackle obesity and diabetes.


Asunto(s)
Hígado Graso/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Obesidad/metabolismo , Células 3T3-L1 , Animales , Modelos Animales de Enfermedad , Células HEK293 , Células HeLa , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transfección
9.
Sci Bull (Beijing) ; 62(18): 1233-1234, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659449
10.
Science ; 349(6247): 500-6, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228140

RESUMEN

The association between inflammation and endoplasmic reticulum (ER) stress has been observed in many diseases. However, if and how chronic inflammation regulates the unfolded protein response (UPR) and alters ER homeostasis in general, or in the context of chronic disease, remains unknown. Here, we show that, in the setting of obesity, inflammatory input through increased inducible nitric oxide synthase (iNOS) activity causes S-nitrosylation of a key UPR regulator, IRE1α, which leads to a progressive decline in hepatic IRE1α-mediated XBP1 splicing activity in both genetic (ob/ob) and dietary (high-fat diet-induced) models of obesity. Finally, in obese mice with liver-specific IRE1α deficiency, reconstitution of IRE1α expression with a nitrosylation-resistant variant restored IRE1α-mediated XBP1 splicing and improved glucose homeostasis in vivo. Taken together, these data describe a mechanism by which inflammatory pathways compromise UPR function through iNOS-mediated S-nitrosylation of IRE1α, which contributes to defective IRE1α activity, impaired ER function, and prolonged ER stress in obesity.


Asunto(s)
Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Óxidos de Nitrógeno/metabolismo , Obesidad/metabolismo , Obesidad/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Factores de Transcripción/genética , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glucosa/metabolismo , Homeostasis , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Ratones Obesos , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box
11.
Sci Transl Med ; 7(292): 292ra98, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26084805

RESUMEN

The endoplasmic reticulum (ER) plays a critical role in protein, lipid, and glucose metabolism as well as cellular calcium signaling and homeostasis. Perturbation of ER function and chronic ER stress are associated with many pathologies ranging from diabetes and neurodegenerative diseases to cancer and inflammation. Although ER targeting shows therapeutic promise in preclinical models of obesity and other pathologies, the available chemical entities generally lack the specificity and other pharmacological properties required for effective clinical translation. To overcome these challenges and identify new potential therapeutic candidates, we first designed and chemically and genetically validated two high-throughput functional screening systems that independently measure the free chaperone content and protein-folding capacity of the ER. With these quantitative platforms, we characterized a small-molecule compound, azoramide, that improves ER protein-folding ability and activates ER chaperone capacity to protect cells against ER stress in multiple systems. This compound also exhibited potent antidiabetic efficacy in two independent mouse models of obesity by improving insulin sensitivity and pancreatic ß cell function. Together, these results demonstrate the utility of this functional, phenotypic assay platform for ER-targeted drug discovery and provide proof of principle for the notion that specific ER modulators can be potential drug candidates for type 2 diabetes.


Asunto(s)
Amidas/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Hipoglucemiantes/farmacología , Tiazoles/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Dieta , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Genes Reporteros , Glucosa/metabolismo , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Luciferasas/metabolismo , Metaboloma/efectos de los fármacos , Ratones Obesos , Chaperonas Moleculares/metabolismo , Obesidad/genética , Obesidad/patología , Fenotipo , Pliegue de Proteína/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
12.
Nucleic Acids Res ; 43(9): e58, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25722369

RESUMEN

In this study, a universal protein expression enhancement RNA tool, termed RNAe, was developed by modifying a recently discovered natural long non-coding RNA. At the moment, RNAe is the only technology for gene expression enhancement, as opposed to silencing, at the post-transcriptional level. With this technology, an expression enhancement of 50-1000% is achievable, with more than 200% enhancement achieved in most cases. This work identified the sufficient and necessary element for RNAe function, which was found to be merely 300 nucleotides long and was named minRNAe. It contains a 72-nt 5' pairing sequence which determines the specificity, a 167-nt short non-pairing interspersed nuclear element (SINE) B2 sequence which enhances ribosome recruitment to the target mRNA, and a poly(A) tail, provided together on a plasmid bearing the appropriate sequences. Cellular delivery of RNAe was achieved using routine transfection. The RNAe platform was validated in several widely-used mammalian cell lines. It was proven to be efficient and flexible in specifically enhancing the expression of various endogenous and exogenous proteins of diverse functions in a dose-dependent manner. Compared to the expression-inhibitory tool RNAi, the RNAe tool has a comparable effect size, with an enhancing as opposed to inhibitory effect. One may predict that this brand new technology for enhancing the production of proteins will find wide applications in both research and biopharmaceutical production.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , ARN Largo no Codificante/química , Formación de Anticuerpos , Línea Celular , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Proteómica , ARN sin Sentido/química , Secuencias Repetitivas de Ácidos Nucleicos , Ribosomas/metabolismo
13.
PLoS Genet ; 8(8): e1002902, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22927828

RESUMEN

Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Familia 7 del Citocromo P450 , Ayuno/metabolismo , Hígado Graso/metabolismo , Glucosa/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , Obesidad/genética , Organismos Libres de Patógenos Específicos , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo
14.
Cell Metab ; 15(5): 623-34, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560215

RESUMEN

The endoplasmic reticulum (ER) is a critical site of protein, lipid, and glucose metabolism, lipoprotein secretion, and calcium homeostasis. Many of the sensing, metabolizing, and signaling mechanisms for these pathways exist within or on the ER membrane domain. Here, we review the cellular functions of ER, how perturbation of ER homeostasis contributes to metabolic dysregulation and potential causative mechanisms of ER stress in obesity, with a particular focus on lipids, metabolic adaptations of ER, and the maintenance of its membrane homeostasis. We also suggest a conceptual framework of metabolic roundabout to integrate key mechanisms of insulin resistance and metabolic diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Estrés Fisiológico/fisiología , Animales , Homeostasis/fisiología , Humanos
15.
Nature ; 473(7348): 528-31, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21532591

RESUMEN

The endoplasmic reticulum (ER) is the main site of protein and lipid synthesis, membrane biogenesis, xenobiotic detoxification and cellular calcium storage, and perturbation of ER homeostasis leads to stress and the activation of the unfolded protein response. Chronic activation of ER stress has been shown to have an important role in the development of insulin resistance and diabetes in obesity. However, the mechanisms that lead to chronic ER stress in a metabolic context in general, and in obesity in particular, are not understood. Here we comparatively examined the proteomic and lipidomic landscape of hepatic ER purified from lean and obese mice to explore the mechanisms of chronic ER stress in obesity. We found suppression of protein but stimulation of lipid synthesis in the obese ER without significant alterations in chaperone content. Alterations in ER fatty acid and lipid composition result in the inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress. Correcting the obesity-induced alteration of ER phospholipid composition or hepatic Serca overexpression in vivo both reduced chronic ER stress and improved glucose homeostasis. Hence, we established that abnormal lipid and calcium metabolism are important contributors to hepatic ER stress in obesity.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Metabolismo de los Lípidos , Hígado/patología , Obesidad/metabolismo , Estrés Fisiológico , Animales , Retículo Endoplásmico/patología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Leptina/deficiencia , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/enzimología , Obesidad/patología , Obesidad/fisiopatología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/biosíntesis , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolaminas/metabolismo , Biosíntesis de Proteínas , Proteómica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Delgadez/metabolismo
16.
Cell Metab ; 11(6): 467-78, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20519119

RESUMEN

Autophagy is a homeostatic process involved in the bulk degradation of cytoplasmic components, including damaged organelles and proteins. In both genetic and dietary models of obesity, we observed a severe downregulation of autophagy, particularly in Atg7 expression levels in liver. Suppression of Atg7 both in vitro and in vivo resulted in defective insulin signaling and elevated ER stress. In contrast, restoration of the Atg7 expression in liver resulted in dampened ER stress, enhanced hepatic insulin action, and systemic glucose tolerance in obese mice. The beneficial action of Atg7 restoration in obese mice could be completely prevented by blocking a downstream mediator, Atg5, supporting its dependence on autophagy in regulating insulin action. Our data demonstrate that autophagy is an important regulator of organelle function and insulin signaling and that loss of autophagy is a critical component of defective insulin action seen in obesity.


Asunto(s)
Autofagia , Retículo Endoplásmico/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Ratones , Ratones Obesos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Obesidad/complicaciones , Transducción de Señal
17.
Nat Cell Biol ; 11(9): 1157-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19701194

RESUMEN

Mounting an effective host immune response without incurring inflammatory injury requires the precise regulation of cytokine expression. To achieve this, cytokine mRNAs are post-transcriptionally regulated by diverse RNA-binding proteins and microRNAs (miRNAs) targeting their 3' untranslated regions (UTRs). Zcchc11 (zinc-finger, CCHC domain-containing protein 11) contains RNA-interacting motifs, and has been implicated in signalling pathways involved in cytokine expression. The nature of the Zcchc11 protein and how it influences cytokine expression are unknown. Here we show that Zcchc11 directs cytokine expression by uridylating cytokine-targeting miRNAs. Zcchc11 is a ribonucleotidyltransferase with a preference for uridine and is essential for maintaining the poly(A) tail length and stability of transcripts for interleukin-6 (IL-6) and other specific cytokines. The miR-26 family of miRNAs targets IL-6, and the addition of terminal uridines to the miR-26 3' end abrogates IL-6 repression. Whereas 78% of miR-26a sequences in control cells contained 1-3 uridines on their 3' ends, less than 0.1% did so in Zcchc11-knockdown cells. Thus, Zcchc11 fine tunes IL-6 production by uridylating miR-26a, which we propose is an enzymatic modification of the terminal nucleotide sequence of mature miRNA as a means to regulate gene expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interleucina-6/genética , MicroARNs/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al ADN/química , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Interleucina-6/metabolismo , Ratones , Datos de Secuencia Molecular , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/metabolismo
18.
Planta ; 224(1): 42-52, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16331466

RESUMEN

The heat shock response (HSR) is a conserved mechanism by which transcripts of heat shock protein (hsp) genes accumulate following mobilization of heat shock transcription factors (HSFs) in response to thermal stress. Studies in animals identified the heat shock factor-binding protein1 (HSBP1) that interacts with heat shock transcription factor1 (HSF1) during heat shock attenuation; overexpression analyses revealed that the coiled-coil protein HSBP1 functions as a negative regulator of the HSR. Zea mays contains two HSBP paralogs, EMP2 and HSBP2, which exhibit differential accumulation during the HSR and plant development. Embryo-lethal recessive emp2 mutations revealed that EMP2 is required for the down-regulation of hsp transcription during embryogenesis, whereas accumulation of HSBP2 is induced in seedlings following heat shock. Notwithstanding, no interaction has yet been demonstrated between a plant HSBP and a plant HSF. In this report 22 maize HSF isoforms are identified comprising three structural classes: HSF-A, HSF-B and HSF-C. Phylogenetic analysis of Arabidopsis, maize and rice HSFs reveals that at least nine ancestral HSF isoforms were present prior to the separation of monocot and eudicots, followed by differential amplification of HSF members in these lineages. Yeast two-hybrid analyses show that EMP2 and HSBP2 interact non-redundantly with specific HSF-A isoforms. Site-specific mutagenesis of HSBP2 reveals that interactions between hydrophobic residues within the coiled coil are required for HSF::HSBP2 binding; domain swapping demonstrate that the isoform specificity of HSF::HSBP interaction is conferred by residues outside of the coiled coil. These data suggest that the non-redundant functions of the maize HSBPs may be explained, at least in part, by the specificity of HSBP::HSF interactions during plant development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Zea mays/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Zea mays/genética
19.
Genetics ; 167(3): 1381-94, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15280250

RESUMEN

The paralogous maize proteins EMPTY PERICARP2 (EMP2) and HEAT SHOCK FACTOR BINDING PROTEIN2 (HSBP2) each contain a single recognizable motif: the coiled-coil domain. EMP2 and HSBP2 accumulate differentially during maize development and heat stress. Previous analyses revealed that EMP2 is required for regulation of heat shock protein (hsp) gene expression and also for embryo morphogenesis. Developmentally abnormal emp2 mutant embryos are aborted during early embryogenesis. To analyze EMP2 function during postembryonic stages, plants mosaic for sectors of emp2 mutant tissue were constructed. Clonal sectors of emp2 mutant tissue revealed multiple defects during maize vegetative shoot development, but these sector phenotypes are not correlated with aberrant hsp gene regulation. Furthermore, equivalent phenotypes are observed in emp2 sectored plants grown under heat stress and nonstress conditions. Thus, the function of EMP2 during regulation of the heat stress response can be separated from its role in plant development. The discovery of emp2 mutant phenotypes in postembryonic shoots reveals that the duplicate genes emp2 and hsbp2 encode nonredundant functions throughout maize development. Distinct developmental phenotypes correlated with the developmental timing, position, and tissue layer of emp2 mutant sectors, suggesting that EMP2 has evolved diverse developmental functions in the maize shoot.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Vegetales Comestibles/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Zea mays/metabolismo , Secuencia de Bases , Northern Blotting , Cartilla de ADN , Genes Duplicados/genética , Calor , Immunoblotting , Inmunohistoquímica , Datos de Secuencia Molecular , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Vegetales Comestibles/genética , Estructura Terciaria de Proteína , ARN/genética , Análisis de Secuencia de ADN , Zea mays/genética , Zea mays/crecimiento & desarrollo
20.
Plant Cell ; 14(12): 3119-32, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12468731

RESUMEN

The heat shock response (HSR) is an evolutionarily conserved molecular/biochemical reaction to thermal stress that is essential to the survival of eukaryotic organisms. Recessive Mutator transposon mutations at the maize empty pericarp2 (emp2) locus led to dramatically increased expression of heat shock genes, retarded embryo development, and early-stage abortion of embryogenesis. The developmental timing of emp2 mutant embryo lethality was correlated with the initial competence of maize kernels to invoke the HSR. Cloning and sequence analyses revealed that the emp2 gene encoded a predicted protein with high similarity to HEAT SHOCK BINDING PROTEIN1, which was first described in animals as a negative regulator of the HSR. emp2 is a loss-of-function mutation of an HSR-negative regulator in plants. Despite the recessive emp2 phenotype, steady state levels of emp2 transcripts were abundant in mutant kernels, and the predicted coding region was unaffected. These expression data suggest that emp2 transcription is feedback regulated, whereas S1 nuclease mapping suggests that emp2 mutant transcripts are 5' truncated and nontranslatable. In support of this model, immunoblot assays revealed that EMP2 protein did not accumulate in mutant kernels. These data support a model whereby an unattenuated HSR results in the early abortion of emp2 mutant embryos. Furthermore, the developmental retardation of emp2 mutant kernels before the HSR suggests an additional role for EMP2 during embryo development distinct from the HSR.


Asunto(s)
Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Semillas/genética , Zea mays/genética , Regiones no Traducidas 5'/genética , Aclimatación/genética , Aclimatación/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Elementos Transponibles de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Calor , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/embriología , Homología de Secuencia de Aminoácido , Zea mays/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...