Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7953): 646-651, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792829

RESUMEN

Seismic studies have found fine-scale anomalies at the core-mantle boundary (CMB), such as ultralow velocity zones (ULVZs)1,2 and the core rigidity zone3,4. ULVZs have been attributed to mantle-related processes5-10, but little is known about a possible core origin. The precipitation of light elements in the outer core has been proposed to explain the core rigidity zone3, but it remains unclear what processes can lead to such precipitation. Despite its importance for the outer core11, the melting behaviour of Fe-Si-H at relevant pressure-temperature conditions is not well understood. Here we report observations of the crystallization of B2 FeSi from Fe-9wt%Si melted in the presence of hydrogen up to 125 GPa and 3,700 K by using laser-heated diamond anvil cells. Hydrogen dramatically increases the Si concentration in the B2 crystals to a molar ratio of Si:Fe ≈ 1, whereas it mostly remains in the coexisting Fe liquid. The high Si content in the B2 phase makes it stable in a solid form at the outermost core temperatures and less dense than the surrounding liquids. Consequently, the Si-rich crystallites could form, float and be sedimented to the underside of the CMB interface, and that well explains the core side rigidity anomalies3,4. If a small amount of the FeSi crystals can be incorporated into the mantle, they would form dense low-velocity structures above the CMB, which may account for some ULVZs10. The B2 FeSi precipitation promoted by H in the outermost core provides a single core-driven origin for two types of anomalies at the CMB. Such a scenario could also explain the core-like tungsten isotope signatures in ocean island basalts12, after the materials equilibrated with the precipitates are entrained to the uppermost mantle by the mantle plumes connected to ULVZs.

2.
Innovation (Camb) ; 4(1): 100354, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36457892

RESUMEN

Oxygen and iron are the most abundant elements on Earth, and their compounds are key planet-forming components. While oxygen is pervasive in the mantle, its presence in the solid inner core is still debatable. Yet, this issue is critical to understanding the co-evolution and the geomagnetic field generation. Thus far, iron monoxide (FeO) is the only known stoichiometric compound in the Fe-FeO system, and the existence of iron-rich Fe n O compounds has long been speculated. Here, we report that iron reacts with FeO and Fe2O3 at 220-260 GPa and 3000-3500 K in laser-heated diamond anvil cells. Ab initio structure searches using the adaptive genetic algorithm indicate that a series of stable stoichiometric Fe n O compounds (with n > 1) can be formed. Like ε-Fe and B8-FeO, Fe n O compounds have close-packed layered structures featuring oxygen-only single layers separated by iron-only layers. Two solid-solution models with compositions close to Fe2O, the most stable Fe-rich phase identified, explain the X-ray diffraction patterns of the experimental reaction products quenched to room temperature. These results suggest that Fe-rich Fe n O compounds with close-packed layered motifs might be stable under inner core conditions. Future studies of the elastic, rheological, and thermal transport properties of these more anisotropic Fe n O solids should provide new insights into the seismic features of the inner core, inner core formation process and composition, and the thermal evolution of the planet.

3.
ACS Appl Mater Interfaces ; 14(41): 46841-46849, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36195978

RESUMEN

Excitonic properties in 2D heterobilayers are closely governed by charge transfer (CT) and excitonic energy transfer (ET) at van der Waals interfaces. Various means have been employed to modulate the interlayer CT and ET, including electrical gating and modifying interlayer spacing, but with limited extent in their controllability. Here, we report a novel method to modulate these transfers in the MoS2/WS2 heterobilayer by applying compressive strain under hydrostatic pressure. Raman and photoluminescence measurements, combined with density functional theory calculations, show pressure-enhanced interlayer interaction of the heterobilayer. Heterobilayer-to-monolayer photoluminescence intensity ratio (η) of WS2 decreases by five times up to ≈4 GPa, suggesting enhanced ET, whereas it increases by an order of magnitude at higher pressures and reaches almost unity. Theoretical calculations show that orbital switching and charge transfers in the heterobilayer's hybridized conduction band are responsible for the non-monotonic modulation of the transfers. Our findings provide a compelling approach toward effective mechanical control of CT and ET in 2D excitonic devices.

4.
Phys Rev Lett ; 126(6): 065702, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33635680

RESUMEN

WN_{6} phase discovered at 126-165 GPa after heating of W in nitrogen. XRD refinements reveal a unit cell in space group R3[over ¯]m which is consistent with the WN_{6} structure with armchairlike hexazine (N_{6}) rings, while strong A_{1g} Raman mode confirms its N─N single bonds. Density functional theory (DFT) calculations reveal balanced contributions of attractive interactions between W and covalent N_{6} rings, and repulsions between N_{6} rings that make WN_{6} ultrastiff and tough. The WN_{6} phase displays long bond lengths in the nearest N-N and pressure-enhanced electronic band gap, which pave the way for finding novel nitrides.

5.
Phys Rev Lett ; 126(2): 025701, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512235

RESUMEN

Elastic moduli (C_{ij}) of single-crystal stishovite and post-stishovite are determined using Brillouin light scattering, impulsive stimulated light scattering, and x-ray diffraction up to 70 GPa. The C_{12} of stishovite converges with the C_{11} at ∼55 GPa, where the transverse wave V_{S1} propagating along [110] also vanishes. Landau modeling of the C_{ij}, B_{1g} optic mode, and lattice parameters reveals a pseudoproper type ferroelastic post-stishovite transition. The transition would cause peculiar anomalies in V_{S} and Poisson's ratio in silica-bearing subducting slabs in the mid-lower mantle.

6.
Phys Rev Lett ; 122(15): 155901, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050539

RESUMEN

Because of their weak interlayer bonding, van der Waals (vdW) solids are very sensitive to external stimuli such as strain. Experimental studies of strain tuning of thermal properties in vdW solids have not yet been reported. Under ∼9% cross-plane compressive strain created by hydrostatic pressure in a diamond anvil cell, we observed an increase of cross-plane thermal conductivity in bulk MoS_{2} from 3.5 to about 25 W m^{-1} K^{-1}, measured with a picosecond transient thermoreflectance technique. First-principles calculations and coherent phonon spectroscopy experiments reveal that this drastic change arises from the strain-enhanced interlayer interaction, heavily modified phonon dispersions, and decrease in phonon lifetimes due to the unbundling effect along the cross-plane direction. The contribution from the change of electronic thermal conductivity is negligible. Our results suggest possible parallel tuning of structural, thermal, and electrical properties of vdW solids with strain in multiphysics devices.

7.
Nature ; 564(7736): E18-E26, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30568198
8.
Phys Rev Lett ; 118(3): 036402, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157335

RESUMEN

Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg_{0.35}Fe_{0.65})CO_{3}] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C_{11}, C_{33}, C_{12}, and C_{13} elastic moduli associated with the compressive stress component and stiffening in C_{44} and C_{14} moduli associated with the shear stress component are observed to occur within the spin transition between ∼42.4 and ∼46.5 GPa. Negative values of C_{12} and C_{13} are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced V_{P} by 10%, in Earth's midlower mantle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...