Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 238: 113913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608463

RESUMEN

A gout attack could be viewed as a nucleation event. Many reports have shown that the typical molecular structure of crystallization inhibitors usually contains carboxyl and hydroxyl groups, which could interact with solute molecules through hydrogen bonding, thereby suppressing the nucleation and growth of crystals. Since 1923, l-lactic acid (LA), a molecule with structural features of inhibitors, has been speculated to be a trigger for acute gout because metabolized LA temporarily reduces uric acid excretion and leads to a slow increase in serum uric acid concentration. However, many cases of gout presumably triggered by elevated lactate in a very short period of 4 h are often inexplicable. Here, we present the unexpected result that LA has a significant "opposite effect" on the nucleation and growth of gouty pathological crystals, which is that as the concentration of the additive LA increases, the nucleation and growth of the crystals is suppressed and then facilitated. This approach may help our clarifying the long-standing "misunderstandings" and further understanding the association between metabolized LA and increased risk of gout attacks. Finally, a novel mechanism called "tailed-made occupancy (TMO)" was used to explain the nucleation and crystallization effects of LA on sodium urate monohydrate (MSUM).


Asunto(s)
Cristalización , Gota , Ácido Láctico , Ácido Úrico , Gota/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Humanos , Ácido Úrico/química , Ácido Úrico/metabolismo
2.
Colloids Surf B Biointerfaces ; 236: 113803, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367289

RESUMEN

The core to the treatment of gout is the elimination of pathologic crystal, monosodium urate monohydrate (MSUM). The primary treatment available is to gradually dissolve the "culprit crystals" by lowering the blood uric acid concentration with medications, which often takes a long time and in severe cases must still be treated surgically. Herein, we developed a dynamic bionic platform based on a hydrogel composite membrane (HCM) to screen the direct facilitated solubilization of MSUM crystals by small organic molecules in bionic saturated, or even supersaturated, solutions. The customized and biologically safe (NAGA/PEGDA/NIPAM) HCM, which is consistent with the main amino acid composition of articular cartilage, well mimics the entire process of organic molecules leading to the dissolution of MSUM crystals in the joint system. With the verifications of this platform, it is shown that l-aspartic acid (ASP) significantly promotes the dissolution of MSUM crystals not only in saturated but also in supersaturated solutions. Furthermore, a novel mechanism called "crane effect" was used to explain this "dissolution effect" of ASP on MSUM, which stems from the ability of ASP to lock onto the surface of MSUM crystals through hydrogen bonding by virtue of its two carboxyl groups, and simultaneously its amino group lifts the uric acid molecules from the surface of MSUM crystals by virtue of interactions of hydrogen bonding. The results of bulk crystallization, scanning electron microscopy (SEM), powder X-diffraction (PXRD), and density-functional theory (DFT) studies are quantitatively consistent with this hypothetical "crane effect" mechanism. Hence, this HCM-based functional platform could provide entirely novel ideas and methods for drug design and screening for the treatment of pathological crystal diseases of gout.


Asunto(s)
Gota , Ácido Úrico , Humanos , Ácido Úrico/química , Biónica , Gota/tratamiento farmacológico , Gota/metabolismo , Cristalización , Hidrogeles
3.
ACS Pharmacol Transl Sci ; 6(12): 1909-1923, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093834

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity that is typically characterized by intrahepatic ectopic steatosis. Nowadays, NAFLD has surpassed viral hepatitis and become the most common chronic liver disease worldwide, which poses a great threat to human health. Silibinin (Sil), a well-known natural product, has been widely used in clinical treatment for liver disorders and exhibited therapeutic potential for NAFLD. However, the suitability of Sil for NAFLD treatment still requires further investigation due to its limited absorption and low bioavailability. This study aimed to construct a Sil-loaded liposome (Sil-Lip) to overcome the limitations of Sil, thereby enhancing its beneficial effects on NAFLD and then investigate the underlying mechanisms of action of Sil-Lip. Herein, Sil-Lip was fabricated by a well-established thin-film dispersion method and carefully characterized, followed by evaluating their therapeutic efficacy using high-fat diet-induced NAFLD mice and free fatty acid -stimulated HepG2 cells. Then, liver transcriptome analysis and 16S ribosomal RNA (16S rRNA) sequencing were utilized to elucidate the potential mechanisms of action of Sil-Lip. Our data indicated that Sil-Lip harbored good gastrointestinal tract stability, mucus layer permeation, and excellent oral absorption and bioavailability. In vivo and in vitro NAFLD models demonstrated that Sil-Lip had better effects in alleviating lipid metabolism disorders, insulin resistance, and inflammation than did Sil alone. Further investigations revealed that the beneficial effects of Sil-Lip were mediated by modulating intrahepatic insulin resistance-related and nuclear factor-kappa B (NF-κB) signaling pathways and extrahepatic gut microbiota. Our study confirmed that Sil-Lip can effectively improve the absorption and bioavailability of Sil, resultantly potentiating its ameliorative effects on NAFLD through modulating intrahepatic insulin resistance-related and NF-κB signaling pathways and extrahepatic gut microbiota.

4.
Front Bioeng Biotechnol ; 11: 1189010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324421

RESUMEN

Background: In recent years, the impact of bacterial biofilms on traumatic wounds and the means to combat them have become a major research topic in the field of medicine. The eradication of biofilms formed by bacterial infections in wounds has always been a huge challenge. Herein, we developed a hydrogel with the active ingredient berberine hydrochloride liposomes to disrupt the biofilm and thereby accelerate the healing of infected wounds in mice. Methods: We determined the ability of berberine hydrochloride liposomes to eradicate the biofilm by means of studies such as crystalline violet staining, measuring the inhibition circle, and dilution coating plate method. Encouraged by the in vitro efficacy, we chose to coat the berberine hydrochloride liposomes on the Poloxamer range of in-situ thermosensitive hydrogels to allow fuller contact with the wound surface and sustained efficacy. Eventually, relevant pathological and immunological analyses were carried out on wound tissue from mice treated for 14 days. Results: The final results show that the number of wound tissue biofilms decreases abruptly after treatment and that the various inflammatory factors in them are significantly reduced within a short period. In the meantime, the number of collagen fibers in the treated wound tissue, as well as the proteins involved in healing in the wound tissue, showed significant differences compared to the model group. Conclusion: From the results, we found that berberine liposome gel can accelerate wound healing in Staphylococcus aureus infections by inhibiting the inflammatory response and promoting re-epithelialization as well as vascular regeneration. Our work exemplifies the efficacy of liposomal isolation of toxins. This innovative antimicrobial strategy opens up new perspectives for tackling drug resistance and fighting wound infections.

5.
ACS Pharmacol Transl Sci ; 6(6): 878-891, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37325446

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a kind of life-threatening interstitial lung disease characterized by progressive dyspnea with accurate pathogenesis unknown. At present, heat shock protein inhibitors are gradually used to treat IPF. Silybin, a heat shock protein C-terminal inhibitor, has high safety and good application prospects. In this work, we have developed a silybin powder able to be used for inhalation administration for the treatment of IPF. Silybin powder was prepared by the spray drying method and identified using cascade impactometry, particle size, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. A rat model of bleomycin-induced IPF was used to assess the effect of inhaled silybin spray-dried powder. Lung hydroxyproline content, wet weight, histology, inflammatory factor expression, and gene expression were examined. The results showed that inhaled silybin spray-dried powder alleviated inflammation and fibrosis, limited hydroxyproline accumulation in the lungs, modulated gene expression in the development of IPF, and improved postoperative survival. The results of this study suggest that silybin spray-dried powder is an attractive candidate for the treatment of IPF.

6.
Int J Pharm ; 641: 123059, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196879

RESUMEN

This paper aimed to improve in vitro dissolution/solubility as well as inhibit intestinal metabolism and thus enhance oral bioavailability for a BDDCS class II drug by constructing surfactant-based amorphous solid dispersions using resveratrol (RES) as a model drug. After preliminary screening of polymers and surfactants, and subsequent prescription optimization, two optimized spray-drying RES-polymer-surfactant ASDs were obtained and exhibited a significant increase in solubility of RES by 2.69-3.45-fold compared to crystalline RES, and by 1.13-1.56-fold compared to corresponding RES-polymer ASDs, maintaining a higher concentration in the dissolution process. A metabolism study using everted sacs showed that two optimized ASDs reduced the concentration ratio of RES-G to RES to 51.66%-52.05% of crystalline RES on the serosal side of the rat everted intestinal sac at 2 h. Consequently, these two RES-polymer-surfactant ASDs achieved significantly higher exposure of RES in the plasma with significant enhancements in Cmax (2.33-2.35-fold higher than crystalline RES, and 1.72-2.04-fold higher than corresponding RES-polymer ASDs), and in AUC 0-∞ (3.51-3.56-fold higher than crystalline RES, and 1.38-1.41-fold higher than corresponding RES-polymer ASDs). These advantages of the RES-polymer-surfactant ASDs in oral absorption of RES were attributed to solubilization by ASDs and metabolic inhibition by UGT inhibitors. The introduction of surfactants including EL and Lab to ASDs plays an important role in inhibiting glucuronidation and further improving solubility. This study demonstrated that such surfactant-based amorphous solid dispersions may serve as a new approach to increase the oral absorption of BDDCS class II drugs.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Ratas , Animales , Tensoactivos/química , Resveratrol , Polímeros/química , Solubilidad , Intestinos , Lipoproteínas
7.
J Ethnopharmacol ; 303: 115999, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509260

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY: The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS: First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS: Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS: These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.


Asunto(s)
FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Scutellaria baicalensis , Receptor Toll-Like 4/metabolismo , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado , Inflamación/patología , Peso Corporal
8.
Membranes (Basel) ; 12(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557154

RESUMEN

Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core-shell structured membrane fabricated on alumina ceramic substrates via a one-step in situ hydrothermal method. The acid resistance of the modified membrane was significantly improved due to the protection provided by a chemically stable carbon layer. After modification, the masses lost by the membrane in the hydrochloric acid solution and the acetic acid solution were sharply reduced by 90.91% and 76.92%, respectively. Kinetic models and isotherm models of adsorption were employed to describe acid adsorption occurring during the membrane process and indicated that the modified membrane exhibited pseudo-second-order kinetics and Langmuir model adsorption. Compared to the pristine membrane, the faster adsorption speed and the lower adsorption capacity were exhibited by the modified membrane, which further had a good performance with treating various kinds of acid solutions. Moreover, the modified membrane could be recycled without obvious flux decay. This modification method provides a facile and efficient strategy for the fabrication of acid-resistant membranes for use in extreme conditions.

9.
RSC Adv ; 12(35): 22574-22580, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106008

RESUMEN

The first gout attack in a hyperuricaemic patient may be regarded as a nucleation event which is caused by monosodium urate monohydrate (MSUM) deposition in the synovial fluid. The effect of Tailor-Made Inhibition (TMI) may be effective as drugs for the prevention of aberrant nucleation and crystallization. Therefore, the understanding of the underlying mechanisms in inhibiting the MSUM nucleation by TMI has proven to be of great significance. Yet most of the published studies about nucleation inhibition have tended to focus on simpler molecular models with a hydrogen-bonded acceptor and donor, which may be not suitable for the uric acid molecule with multiple hydrogen-bonded acceptors and donors under physiological conditions. Herein, the mechanisms of nucleation inhibition of MSUM were explored in a simulated biological environment (0.15 M Na+ and pH 7.40) in the presence and absence of TMI. And the evidence of nucleation inhibition by TMI in solution and the amorphous form of MSUM was investigated by HNMR, IR, Raman, PXRD, Dynamic light scattering (DLS), induction time measurements, and density functional theory (DFT) calculations. Results showed that the inhibition comes from a combination of kinetic and thermodynamic effects, with an impact of kinetics as the TMI inhibition effects far exceeded what could be accounted for by changes in usual factors of classical nucleation theory. The data demonstrated that the complex between urate and TMI disturbed the formation of two-dimensional sheets of sodion and purine rings parallel to the (011) plane and further impeded the formation of a three-dimensional structure with aromatic stacking interactions in solution. To our knowledge, the nucleation inhibition of TMI is achieved by suppressing interplanar stacking, which is a mechanism proposed for the first time.

10.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3224-3232, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35851115

RESUMEN

The present study explored the correlation between the hydrodynamic size(i.e., hydrated particle size) and the surface component distribution of spray-dried powder based on the binary system model of berberine hydrochloride and dextran. A variety of mixture solutions containing substances of different proportions were prepared, and the hydrated particle sizes of the solutions were measured by laser light scattering technique. Then the effects of molecular weight and mixing proportion on the particle size were analyzed. After the solutions were spray-dried, the surface components of spray-dried powder were determined by X-ray photoelectron spectroscopy. The changes of hydrated particle size of the two substances in different solutions were measured with the altered solution environments, and the distribution of surface components after spray-drying was observed. The results of particle size measurement showed that different solution environments would change the hydrodynamic size of substances. Specifically, the particle size of berberine hydrochloride increased with the increase in ionic strength and solution pH, while the particle size of dextran decreased with the increase in ionic strength and increased with the increase in solution pH. The results of surface components of the spray-dried powder indicated that berberine hydrochloride was prone to accumulate on the surface of particles during spray-drying because of its large hydrodynamic size. Therefore, hydrodynamic size is considered an important factor affecting the surface component distribution of spray-dried powder. As revealed by scanning electron microscopy of the particle morphology of spray-dried powder, the particles of berberine hydrochloride spray-dried powder were irregularly elliptic, and the particles of dextran and mixture spray-dried powders were irregularly spherical with the shrunken surface. Finally, the FT4 powder rheometer and DVS instrument were used to determine the stability, adhesion, and hygroscopicity of the powder. The results showed that when berberine hydrochloride was enriched on the surface, the adhesion of the mixture increased and the fluidity became worse, but the hygroscopicity was improved to a certain extent. In addition, as found by hygroscopic kinetic curve fitting of spray-dried powder, the hygroscopic behaviors of all spray-dried powder conformed to the double exponential function.


Asunto(s)
Berberina , Administración por Inhalación , Aerosoles/química , Dextranos , Inhaladores de Polvo Seco/métodos , Hidrodinámica , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Polvos/química
11.
Int J Pharm ; 620: 121770, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35483618

RESUMEN

Natural aglycones, a major ingredient accompanied by glycosides in plants, have played an important role in the treatment of various diseases. However, their bioavailability is limited by their poor water solubility. In contrast to previous efforts that required the use of new exotic materials which may raise concerns about biocompatibility, we report the first case of excipient-free nanodispersions in which an insoluble glycyrrhetinic acid (GA) assembled with its amphiphilic parent drug diammonium glycyrrhizinate (DG) into water-dispersible nanodispersions (130.8 nm for particle size and 91.74% for encapsulation efficiency). This strategy largely increased GA's water apparent solubility by hundreds of times to 549.0 µg/mL with a high cumulative dissolution percentage in vitro greater than 80% in 5 min. The study on the formation mechanism showed that the OH, C-O and C=O group stretching peaks shifted in the FTIR spectra of GA-DG nanodispersions, while the COOH peak (δ COOH 12.19 ppm) disappeared in the 1H NMR spectrum of GA-DG nanodispersions, indicating that carboxyl groups on GA may interact with the hydroxyl groups of DG in solution. Molecular dynamics simulations suggested that both hydrophobic interactions and hydrogen-bond interactions contribute to the coassembly of GA and DG molecules in aqueous solution. Oral pharmacokinetic studies in rats demonstrated that such nanodispersions have a significant increase in Cmax and AUC0-t of 2.45- and 3.45-fold compared with those for GA, respectively. Therefore, this strategy, employing amphiphilic glycosides as excipients to prepare nanodispersions, not using new materials, paves the way for the further application of hydrophobic aglycone drugs.


Asunto(s)
Excipientes , Ácido Glicirretínico , Animales , Disponibilidad Biológica , Excipientes/química , Glicósidos , Ácido Glicirrínico , Interacciones Hidrofóbicas e Hidrofílicas , Ratas , Agua
12.
Adv Healthc Mater ; 11(8): e2101745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35037424

RESUMEN

Resistance and tolerance of biofilms to antibiotics is the greatest challenge in the treatment of bacterial infections. Therefore, developing an effective strategy against biofilms is a top priority. Liposomes are widely used as antibiotic drug carriers; however, common liposomes lack affinity for biofilms. Herein, biofilm-targeted antibiotic liposomes are created by simply adjusting their cholesterol content. The tailored liposomes exhibit significantly enhanced bacterial inhibition and biofilm eradication effects that are positively correlated with the cholesterol content of liposomes. The experiments further demonstrate that this enhanced effect can be ascribed to the effective drug release through the pores, which are formed by the combination of cholesterol microdomains in liposomal lipid bilayers with membrane-damaged toxins in biofilms. Consequently, liposome encapsulation with a high cholesterol concentration improves noticeably the pharmacodynamics and biocompatibility of antibiotics after pulmonary administration. This work may provide a new direction for the development of antibiofilm formulations that can be widely used for the treatment of infections caused by bacterial biofilms.


Asunto(s)
Antibacterianos , Liposomas , Antibacterianos/farmacología , Biopelículas , Colesterol , Portadores de Fármacos/farmacología , Liposomas/farmacología , Pruebas de Sensibilidad Microbiana
13.
ACS Omega ; 6(4): 3307-3318, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553948

RESUMEN

Silybin is a flavonoid lignin compound consisting of two diastereomers with nearly equal molar ratios. It has been reported that silybin can effectively inhibit the aggregation of amyloid protein, but the difference between the two silybin diastereomers has been rarely studied. In this work, the inhibitory ability of silybin to hen egg-white lysozyme (HEWL) was demonstrated, and the difference of kinetic parameters of two diastereomers was analyzed. Fluorescence quenching titration was utilized to analyze the binding differences to native HEWL between the diastereomers, and transmission electron microscopy (TEM) was utilized to analyze the characteristics of the surface of various samples. The differences between hydrophobicity and the secondary structure among several HEWL samples were measured by the 8-anilino-1-naphthalene sulfonic (ANS) acid fluorescence probe, Raman spectra, and far-UV circular dichroism. Moreover, the differences in the binding energy of these two diastereomers with HEWL were analyzed by molecular docking. Also, we have investigated the effect of silybin diastereomers on HEWL fibril-induced cytotoxicity in SH-SY5Y cells. Results show that silybin has a certain inhibitory effect on the HEWL fibrillogenesis process, while silybin B (SB) has a more significant inhibitory effect than silybin A (SA), especially at high concentrations. This work provides some insights into the screening of amyloid inhibitors from complicated natural products and indicates that SB has the prospect of further development as an amyloid inhibitor.

14.
Int J Pharm ; 596: 120218, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493598

RESUMEN

Previously, we have reported the evaluations of alginate and Bletilla striata polysaccharide (BSP) in formulation of microsphere, which is a muco-adhesive carrier and can achieve a long duration of gastric retention. The combination of Panax notoginseng (Burk.) and B. striata is a traditional Chinese herbal formula that is used to treat gastric ulcers. BSP, an effective ingredient of B. striata, possesses both medicinal and excipient functions. Panax notoginseng saponin (PNS), which can easily dissolve in water, is the main effective ingredient in P. notoginseng (Burk.) for the treatment of gastric ulcers. However, microspheres containing PNS could directly cause drug leakage, ultimately reducing the encapsulation rate. In this study, PNS was fabricated into a hydrophobic dispersion with slow-release characteristics. Subsequently, PNS was packaged into BSP/alginate microspheres to improve the encapsulation rate. The prepared PNS-loaded microspheres were round, the release characteristics aligned with the Weibull equation, and the active ingredients were released by diffusion and erosion. The developed microspheres improved the effects of PNS and synergistically exerted the pharmaceutical effects of BSP on acute gastric ulcers.


Asunto(s)
Panax notoginseng , Saponinas , Úlcera Gástrica , Alginatos , Microesferas , Polisacáridos , Úlcera Gástrica/tratamiento farmacológico
15.
Colloids Surf B Biointerfaces ; 198: 111461, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33246779

RESUMEN

Nanocrystals, due to high drug loading efficiency, have drawn large attention as nanotechnology to enhance solubility and bioavailability of poorly soluble drugs. However, most nanocrystals still encountered low oral absorption percentage due to its insufficient retention time in the gastrointestinal tract (GI). In this work, silybin (SB) as model drug was fabricated to nanocrystals, and further loaded into a mucoadhesive microsphere to increase the GI retention. Such mucoadhesive microspheres were prepared with a wet media milling technique followed by coagulation and film coating. Nanocrystals and microspheres were thoroughly characterized by diverse complementary techniques. As results, such delivery system displayed an encapsulation efficiency of approximately 100 % and a drug loading capacity of up to 35.41 ± 0.31 %. In addition, mucoadhesiveness test ex vivo conducted with rat intestine showed that film-coated microspheres were retained for more than 1 h. Benefiting from nanocrystals technology, the drug cumulative release percentage of the microspheres was remarkable improved compared to unprocessed one in vitro. Finally, pharmacokinetics studies in rats showed a significant 3-fold increase of drug oral bioavailability compared to unprocessed SB. The current study demonstrates that the developed delivery vehicle can enhance the bioavailability of SB by increasing its dissolution percentage as well as through extending retention time in the GI tract, and achieve high drug loading capacity.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Administración Oral , Animales , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Microesferas , Tamaño de la Partícula , Ratas , Silibina , Solubilidad
16.
Mol Pharm ; 17(5): 1596-1607, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32142292

RESUMEN

Pulmonary fibrosis (PF) is a kind of interstitial lung disease with the features of progressive and often fatal dyspnea. Tetrandrine (TET) is the major active constituent of Chinese herbal Stephania tetrandra S. Moore, which has already applied clinically to treat rheumatism, lung cancer, and silicosis. In this work, a tetrandrine-hydroxypropyl-ß-cyclodextrin inclusion compound (TET-HP-ß-CD) was developed for the treatment of pulmonary fibrosis via inhalation administration. TET-HP-ß-CD was prepared by the freeze-drying method and identified using the cascade impactor, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR). A bleomycin-induced pulmonary fibrosis rat model was used to assess the effects of inhaled TET and TET-HP-ß-CD. Animal survival, hydroxyproline content in the lungs, and lung histology were detected. The results showed that inhalation of TET-HP-ß-CD alleviated inflammation and fibrosis, limited the accumulation of hydroxyproline in the lungs, regulated protein expression in PF development, and improved postoperative survival. Moreover, nebulized delivery of TET-HP-ß-CD accumulated chiefly in the lungs and limited systemic distribution compared with intravenous administration. The present results indicated that inhalation of TET-HP-ß-CD is an attractive candidate for the treatment of pulmonary fibrosis.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Bencilisoquinolinas/química , Fibrosis Pulmonar/tratamiento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Administración por Inhalación , Animales , Bencilisoquinolinas/administración & dosificación , Bencilisoquinolinas/farmacocinética , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/patología , Masculino , Fibrosis Pulmonar/mortalidad , Fibrosis Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Factor de Necrosis Tumoral alfa/análisis
17.
Langmuir ; 36(8): 2136-2142, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027142

RESUMEN

Biomineralization is characterized by the fact that the crystallization of inorganic minerals is guided by an in vivo biological interface. However, the interfaces that direct calcification are widely debated up to date. In this paper, it was found that the two-dimensional (2D) immiscible domain of cholesterol in the lipid bilayer can induce the deposition of calcium phosphate by rapidly promoting the nucleation of the hydroxyapatite (001) plane. This promotion effect is related to the high lattice matching degree between the 2D cholesterol immiscible domain and the (001) plane of hydroxyapatite (HAP), which leads to the heteroepitaxy of HAP. The lipid bilayer derived from cells or vesicles is the largest biological interface in the body, thus revealing whether the lipid bilayer can induce the deposition of calcium phosphate will facilitate the understanding of the important role of cells or vesicles in calcification.

18.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2841-2848, 2019 Jul.
Artículo en Chino | MEDLINE | ID: mdl-31359699

RESUMEN

Curcumin( Cur) is a natural active substance extracted from the roots or tubers of traditional Chinese medicinal materials. It has anti-inflammatory and anti-tumor activities on brain diseases. Due to the poor stability,low solubility,poor absorption and low bioavailability of curcumin,N-acetyl-L-cysteine( NAC) was used as an absorption enhancer and mixed with curcumin to improve the absorption of curcumin in the body. In this paper,curcumin was smashed by airflow pulverization,and Cur-NAC mixtures were prepared by being grinded with liquid. Then,the raw material and the product were analyzed by differential scanning calorimetry( DSC),X-ray diffraction( XRD) for structural characterization. The dissolution was determined by high performance liquid chromatography( HPLC) analysis. The characteristic peaks of the samples prepared by grinding method were similar to those of the raw materials,while the melting temperature and the accumulated dissolution degree were not significantly changed. The crystal forms of the products were not changed,and no new crystal form was formed after grinding. After the administration of intranasal powder,blood samples were collected from the orbit,while the whole brain tissues were removed from the skull and dissected into 10 anatomical regions. The concentrations of curcumin in these samples were determined by UPLC-MS/MS. The concentrations of curcumin in plasma and brain were compared at different time points. After intranasal administration of two drugs,it was found that the concentration of curcumin after sniffing up the mixtures in plasma was high,and the concentration of the drug in the olfactory bulb,hippocampus,and pons was increased significantly. Within 0. 083-0. 5 h,the olfactory bulb,piriform lobe and hippocampus remained high concentrations,the endodermis,striatum,hypothalamus and midbrain reached high concentrations within 1-3 h; and the cerebellum,pons and brain extension maintained relatively high concentrations within 3-7 h. The experiment showed that nasal administration of Cur-NAC mixtures can significantly improve the bioavailability of curcumin,and lead to significant differences in brain tissue distribution.


Asunto(s)
Acetilcisteína/farmacología , Química Encefálica , Curcumina/farmacocinética , Administración Intranasal , Animales , Disponibilidad Biológica , Encéfalo , Cromatografía Liquida , Ratas , Espectrometría de Masas en Tándem , Distribución Tisular
19.
Eur J Pharm Sci ; 134: 246-255, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31034984

RESUMEN

Curcumin attracted attention due to its promising anti-cancer properties and safety performance. However, its poor aqueous solubility and low bioavailability have to be overcome before it goes into clinic use. Here, porous composite particles are prepared by loading curcumin into mesoporous material SBA-15, and its therapeutic effect on lung cancer via inhalation administration have also been evaluated. The inclusion of curcumin in host material SBA-15 was confirmed by the reduced surface area and pore diameter of the composite material, and the aerodynamic performance of the composite material was investigated by FT-4 and NGI. Phagocytosis experiments on RAW264.7, the toxicity of material extracts on BEAS-2B cells, and the haemolysis experiments showed that the mesoporous materials had good biocompatibility at 10-400 µg/mL. The B16F10 melanoma metastatic lung mouse model was used to investigate the therapeutic effect of lung cancer after inhalable administration. It was found that the body weight of the curcumin composite particle-administered group decreased more slowly and the lung disease developed slower than the curcumin crude drug group, indicating that the composite particles has a certain inhibitory effect on tumours.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/uso terapéutico , Portadores de Fármacos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Administración por Inhalación , Animales , Disponibilidad Biológica , Técnicas de Cultivo de Célula , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Metástasis de la Neoplasia , Tamaño de la Partícula , Fagocitosis , Células RAW 264.7 , Dióxido de Silicio , Solubilidad
20.
Int J Pharm ; 561: 9-18, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30817985

RESUMEN

Curcumin (CUR) has gained increasing interest worldwide due to multiple biological activities. However, the therapeutic application remains limited because of its low aqueous solubility, intestinal metabolism and poor membrane permeability. In present study, an excipient-free CUR solid dispersion co-formed with piperine (PIP), the absorption enhancer involving metabolism-permeability, was successfully prepared by melting and quench cooling (co-amorphous CUR-PIP). The co-amorphous CUR-PIP exhibited superior performance in non-sink dissolution compared with crystalline and amorphous CUR, and showed physically stable at least 3 months, attributing to the strong molecular interactions between CUR and PIP as evaluated by FTIR spectra. Furthermore, the combination of PIP with CUR in the co-amorphous formulation could inhibit the glucuronidation of CUR, as exhibited in the in vitro assay of rat intestinal microsomes. The co-amorphous CUR-PIP would also exhibit higher gastrointestinal membrane permeability of CUR, as confirmed by Papp of CUR in Caco-2 model. After administration of co-amorphous CUR-PIP, the AUC of CUR significantly increased by 2.16- and 1.92-fold those in crystalline and amorphous CUR, respectively. This study demonstrates that the developed co-amorphous CUR-PIP can enhance the bioavailability of CUR by increasing its dissolution, inhibiting metabolic processes, and facilitating membrane permeability.


Asunto(s)
Curcumina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Absorción Intestinal , Alcaloides/química , Animales , Benzodioxoles/química , Disponibilidad Biológica , Células Cultivadas , Curcumina/química , Estabilidad de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Piperidinas/química , Alcamidas Poliinsaturadas/química , Ratas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...