Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(17): e2305363, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105346

RESUMEN

To fabricate label-free and rapid-resulting semiconducting biosensor devices incorporating graphene, it is pertinent to directly grow uniform graphene films on technologically important dielectric and semiconducting substrates. However, it has long been intuitively believed that the nonideal disordered structures formed during direct growth, and the resulted inferior electrical properties will inevitably lead to deteriorated sensing performance. Here, graphene biosensor chips are constructed based on direct plasma-enhanced chemical vapor deposition (PECVD) grown graphene on a 4-inch silicon wafer with excellent film uniformity and high yield. To surprise, optimal operations of graphene biosensors permit ultrasensitive detection of SARS-CoV-2 virus nucleocapsid protein with dilutions down to sub-femtomolar concentrations. Such impressive limit of detection (LOD) is comparable to or even outperforms that of the state-of-the-art biosensor devices based on high-quality graphene. Further noise spectral characterizations and analysis confirms that the LOD is limited by molecular diffusion and/or known interference signals such as drift and instability of the sensors, rather than the electrical merits of the graphene devices along. Hence, result sheds light on processing directly grown PECVD graphene into high-performance sensor devices with important economic benefits and social significance.

2.
Front Chem ; 11: 1183381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090249

RESUMEN

The application of two-dimensional (2D) materials, including metallic graphene, semiconducting transition metal dichalcogenides, and insulating hexagonal boron nitride (h-BN) for surface-enhancement Raman spectroscopy has attracted extensive research interest. This article provides a critical overview of the recent developments in surface-enhanced Raman spectroscopy using 2D materials. By re-examining the relationship between the lattice structure and Raman enhancement characteristics, including vibration selectivity and thickness dependence, we highlight the important role of dipoles in the chemical enhancement of 2D materials.

3.
Nature ; 615(7950): 56-61, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859579

RESUMEN

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

4.
Nanoscale Adv ; 4(6): 1608-1616, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134375

RESUMEN

Optical filters operating in the visible region of the spectrum are highly desired for applications ranging from optical communication and sensing to fluorescence microscopy and skin therapy. However, complex fabrication procedures and/or inferior performance, limit the practical applications of previously reported thin-film-based optical filters. Herein, we describe the structual design concepts and facile fabrication of vertically stacked heterolayers of TiO2/Al2O3 to obtain a bandpass filter and a longwave pass edge filter operating in the spectral range 410-600 nm and 400-597 nm, respectively. The optical filters are designed according to MacLeod simulation and fabricated via magnetron sputtering, depositing alternative stacks of low (Al2O3) and high (TiO2) refractive index materials with different thicknesses, as confirmed by spectroscopic ellipsometry. Owing to a reasonable matching between the design and the fabrication, our developed TiO2/Al2O3 heterolayer optical filters exhibited 54.60% transmission for 7-layer longwave pass edge filter and 15% reflectance for 14-layer bandpass filter of a selective set of wavelengths (400-800 nm).

5.
Adv Mater ; 34(7): e2106666, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34994022

RESUMEN

Owing to their excellent electrical properties and chemical stability, graphene field-effect transistors (Gr-FET) are extensively studied for biosensing applications. However, hinging on surface interactions of charged biomolecules, the sensitivity of Gr-FET is hampered by ionic screening under physiological conditions with high salt concentrations up to frequencies as high as MHz. Here, an electrolyte-gated Gr-FET in reflectometry mode at ultrahigh frequencies (UHF, around 2 GHz), where the ionic screening is fully cancelled and the dielectric sensitivity of the device allows the Gr-FET to directly function in high-salt solutions, is configured. Strikingly, by simultaneous characterization using electrolyte gating and UHF reflectometry, the developed graphene biosensors offer unprecedented capability for real-time monitoring of dielectric-specified biomolecular/cell interactions/activities, with superior limit of detection compared to that of previously reported nanoscale high-frequency sensors. These achievements highlight the unique potential of ultrahigh-frequency operation for unblocking the true potential of graphene biosensors for point-of-care diagnostic.


Asunto(s)
Técnicas Biosensibles , Grafito , Electrólitos , Grafito/química , Iones , Transistores Electrónicos
6.
Adv Mater ; 34(2): e2105276, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738668

RESUMEN

Electrochemical sensors for detecting micromolecule organics are desirable for improving the perception of environmental quality and human health. However, currently, the electrochemical sensors for formaldehyde are substantially limited on the market due to the long-term unsolved problems of the low electrooxidation efficiency and CO poisoning issue of commercial Pd catalysts. Here, a 2D Cr-doped Pd metallene (Cr-Pdene) with few atomic layers is shown as an advanced catalyst for ultrasensitive and selective sensing of formaldehyde via a highly efficient formaldehyde electrooxidation. It is found that the doping of Cr into Pd metallene can efficiently optimize the electronic structure of Pd and weaken the interaction between Pd and CO, providing an anti-poisoning means to favor CO2 production and suppress CO adsorption. The Cr-Pdene-based electrochemical sensor exhibits one order of magnitude higher detection range and, especially, much higher anti-interference for formaldehyde than that of the conventional sensors. Most importantly, it is demonstrated that the Cr-Pdene can be integrated into commercializable wireless sensor networks or handheld instruments for promising applications relating to the environment, health, and food.

7.
J Hazard Mater ; 411: 125034, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858080

RESUMEN

Carbon frameworks (CFs) derived from metal-organic frameworks (MOFs) have been produced as adsorbents of toluene. To further obtain optimum hierarchical porous carbon structure of CFs, different treatment temperatures were applied to a typical kind of MOFs (ZIF-8). The adsorption capacity of the toluene of hierarchical porous CFs obtained from ZIF-8 under 1100 °C (CF-1100, adsorption capacity of 208.5 mg/g) was higher than that of other carbonization temperature and MOFs. Impressively, the adsorbent CF-1100 also exhibited strong hydrophobicity, low desorption temperature, and good selectivity to toluene. The adsorption capacity decreased by only 10.4% under wet condition compared with the dry condition, standing on the top of the recently reported adsorbents. The impressive adsorption performance of CF-1100 is attributed to the larger specific surface area (1024 m2/g) and pore volume (0.497 cm3/g), newly generated micropores (pore width is 0.6-0.8 nm) and mesopores (pore width above 10 nm), and carbonaceous structure with higher degree of graphitization. Based on the adequate adsorption performance, CF-1100 coated quartz crystal microbalances as sensor also showed a high sensitivity of 0.4004 Hz/ppm and small relative standard deviations of 1.0745% for toluene sensing. This contribution provides a foundation for optimizing potential adsorbents and sensing materials for air pollution abatement.

8.
Talanta ; 221: 121465, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076085

RESUMEN

Robust quantitative analysis methods are very attractive but challenging with surface-enhanced Raman scattering (SERS) technique till now. Quantitative analysis methods using absolute Raman scattering intensities tend to desire very critical reproducibility of SERS substrates and consistency of testing conditions, as batch differences and inhomogeneity of SERS substrates as well as the fluctuation of measuring parameters placed challenging obstacles. Relative Raman scattering intensities, on the other hand, can release the adverse interferences mentioned above and provide effective and robust information as it is independent of the reproducibility of SERS substrates. By establishing external calibration working curves, we achieved accurate molecule composition prediction of molecules in multi-component systems. Further, by choosing or adding a label molecule with known concentration as Raman internal standards, the concentration of target molecules can be easily predicted. This approach proved the effectiveness and robustness of quantitative analysis with the relative Raman scattering intensities, even carried out with a flexible inhomogeneous SERS substrate.

9.
Chem Soc Rev ; 49(19): 6866-6883, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33016966

RESUMEN

Two-dimensional (2D) materials have received extensive interest due to their exceptional properties. It is strongly required to assemble 2D materials in bulk quantities for macroscopic applications, but this is highly restricted by the aggregation of 2D materials. Constructing three-dimensional (3D) hybrid superlattices of alternating 2D materials and organic molecule layers provides a new path to access the exceptional properties of 2D materials in bulk quantities. In this tutorial review, the emerging concept of hybrid inorganic/organic superlattices is systematically illustrated. The abundant compositions and the various structures of inorganic and organic sublattices in hybrid superlattices are presented, followed by a summary of the chemical interactions between them. Many facile techniques have been developed for hybrid superlattices, enabling precise control of the structure. There are also various interesting mechanisms inside unique hybrid inorganic/organic superlattices that can help tune the properties, including electron transfer, quantum confinement, interlayer coupling, multiple interface effects, etc. The rich chemistry and abundant mechanisms of these hybrid superlattices can enhance the performance beyond the reach of existing materials, and provide new opportunities in various applications, including rechargeable batteries, catalysis, thermoelectrics, advanced electronics, superconductors, optoelectronics, etc.

10.
ACS Sens ; 5(8): 2317-2325, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32573208

RESUMEN

A wide range of approaches have been explored to meet the challenges of graphene nanostructure fabrication, all requiring complex and high-end nanofabrication platform and suffering from surface contaminations, potentially giving electrical noise and increasing the thickness of the atomically thin graphene membrane. Here, with the use of an electrical pulse on a low-capacitance graphene-on-glass (GOG) membrane, we fabricated clean graphene nanopores on commercially available glass substrates with exceptionally low electrical noise. In situ liquid AFM studies and electrochemical measurements revealed that both graphene nanopore nucleation and growth stem from the electrochemical attack on carbon atoms at defect sites, ensuring the creation of a graphene nanopore. Strikingly, compared to conventional TEM drilled graphene nanopores on SiN supporting membranes, GOG nanopores featured an order-of-magnitude reduced broadband noise, which we ascribed to the electrochemical refreshing of graphene nanopore on mechanically stable glass chips with negligible parasitic capacitance (∼1 pF). Further experiments on double-stranded DNA translocations demonstrated a greatly reduced current noise, and also confirmed the activation of single nanopores. Therefore, the exceptionally low noise and ease of fabrication will facilitate the understanding of the fundamental property and the application of such atomically thin nanopore sensors.


Asunto(s)
Grafito , Nanoporos , ADN , Vidrio , Nanotecnología
11.
Adv Mater ; 32(10): e1903575, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32011060

RESUMEN

Direct electrical probing of molecular materials is often impaired by their insulating nature. Here, graphene is interfaced with single crystals of a molecular spin crossover complex, [Fe(bapbpy)(NCS)2 ], to electrically detect phase transitions in the molecular crystal through the variation of graphene resistance. Contactless sensing is achieved by separating the crystal from graphene with an insulating polymer spacer. Next to mechanical effects, which influence the conductivity of the graphene sheet but can be minimized by using a thicker spacer, a Dirac point shift in graphene is observed experimentally upon spin crossover. As confirmed by computational modeling, this Dirac point shift is due to the phase-dependent electrostatic potential generated by the crystal inside the graphene sheet. This effect, named as chemo-electric gating, suggests that molecular materials may serve as substrates for designing graphene-based electronic devices. Chemo-electric gating, thus, opens up new possibilities to electrically probe chemical and physical processes in molecular materials in a contactless fashion, from a large distance, which can enhance their use in technological applications, for example, as sensors.

12.
Small ; 16(15): e1902820, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31592577

RESUMEN

This review provides a critical overview of current developments on nanoelectronic biochemical sensors based on graphene. Composed of a single layer of conjugated carbon atoms, graphene has outstanding high carrier mobility and low intrinsic electrical noise, but a chemically inert surface. Surface functionalization is therefore crucial to unravel graphene sensitivity and selectivity for the detection of targeted analytes. To achieve optimal performance of graphene transistors for biochemical sensing, the tuning of the graphene surface properties via surface functionalization and passivation is highlighted, as well as the tuning of its electrical operation by utilizing multifrequency ambipolar configuration and a high frequency measurement scheme to overcome the Debye screening to achieve low noise and highly sensitive detection. Potential applications and prospectives of ultrasensitive graphene electronic biochemical sensors ranging from environmental monitoring and food safety, healthcare and medical diagnosis, to life science research, are presented as well.


Asunto(s)
Técnicas Biosensibles , Electrónica , Grafito , Carbono
13.
ACS Cent Sci ; 4(5): 661, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29806014

RESUMEN

[This corrects the article DOI: 10.1021/acscentsci.6b00236.].

14.
Nat Commun ; 9(1): 793, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476098

RESUMEN

The design of electrochemically gated graphene field-effect transistors for detecting charged species in real time, greatly depends on our ability to understand and maintain a low level of electrochemical current. Here, we exploit the interplay between the electrical in-plane transport and the electrochemical activity of graphene. We found that the addition of one H-sp3 defect per hundred thousand carbon atoms reduces the electron transfer rate of the graphene basal plane by more than five times while preserving its excellent carrier mobility. Remarkably, the quantum capacitance provides insight into the changes of the electronic structure of graphene upon hydrogenation, which predicts well the suppression of the electrochemical activity based on the non-adiabatic theory of electron transfer. Thus, our work unravels the interplay between the quantum transport and electrochemical kinetics of graphene and suggests hydrogenated graphene as a potent material for sensing applications with performances going beyond previously reported graphene transistor-based sensors.

15.
Nanoscale ; 10(3): 1487-1493, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29303194

RESUMEN

We report on the scanning tunneling microscopy/spectroscopy (STM/STS) study of cobalt phthalocyanine (CoPc) molecules deposited onto a back-gated graphene device. We observe a clear gate voltage (Vg) dependence of the energy position of the features originating from the molecular states. Based on the analysis of the energy shifts of the molecular features upon tuning Vg, we are able to determine the nature of the electronic states that lead to a gapped differential conductance. Our measurements show that capacitive couplings of comparable strengths exist between the CoPc molecule and the STM tip as well as between CoPc and graphene, thus facilitating electronic transport involving only unoccupied molecular states for both tunneling bias polarities. These findings provide novel information on the interaction between graphene and organic molecules and are of importance for further studies, which envisage the realization of single molecule transistors with non-metallic electrodes.

16.
Nano Lett ; 17(12): 7980-7988, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29182292

RESUMEN

Ethene is a highly diffusive and relatively unreactive gas that induces aging responses in plants in concentrations as low as parts per billion. Monitoring concentrations of ethene is critically important for transport and storage of food crops, necessitating the development of a new generation of ultrasensitive detectors. Here we show that by functionalizing graphene with copper complexes biologically relevant concentrations of ethene and of the spoilage marker ethanol can be detected. Importantly, in addition these sensors provide us with important insights into the interactions between molecules, a key concept in chemistry. Chemically induced dipole fluctuations in molecules as they undergo a chemical reaction are harvested in an elegant way through subtle field effects in graphene. By exploiting changes in the dipole moments of molecules that occur upon a chemical reaction we are able to track the reaction and provide mechanistic insight that was, until now, out of reach.

17.
Sci Adv ; 3(10): e1701247, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29075669

RESUMEN

Over the past decade, the richness of electronic properties of graphene has attracted enormous interest for electrically detecting chemical and biological species using this two-dimensional material. However, the creation of practical graphene electronic sensors greatly depends on our ability to understand and maintain a low level of electronic noise, the fundamental reason limiting the sensor resolution. Conventionally, to reach the largest sensing response, graphene transistors are operated at the point of maximum transconductance, where 1/f noise is found to be unfavorably high and poses a major limitation in any attempt to further improve the device sensitivity. We show that operating a graphene transistor in an ambipolar mode near its neutrality point can markedly reduce the 1/f noise in graphene. Remarkably, our data reveal that this reduction in the electronic noise is achieved with uncompromised sensing response of the graphene chips and thus significantly improving the signal-to-noise ratio-compared to that of a conventionally operated graphene transistor for conductance measurement. As a proof-of-concept demonstration of the usage of the aforementioned new sensing scheme to a broader range of biochemical sensing applications, we selected an HIV-related DNA hybridization as the test bed and achieved detections at picomolar concentrations.

18.
Sci Rep ; 7(1): 6658, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751775

RESUMEN

This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1-2 mS·V-1·â–¡ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time.


Asunto(s)
Electrofisiología/instrumentación , Grafito , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Transistores Electrónicos , Animales , Células Cultivadas , Fenómenos Electrofisiológicos , Ratones , Ratas
19.
Adv Mater ; 29(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896865

RESUMEN

Recent research trends now offer new opportunities for developing the next generations of label-free biochemical sensors using graphene and other two-dimensional materials. While the physics of graphene transistors operated in electrolyte is well grounded, important chemical challenges still remain to be addressed, namely the impact of the chemical functionalizations of graphene on the key electrical parameters and the sensing performances. In fact, graphene - at least ideal graphene - is highly chemically inert. The functionalizations and chemical alterations of the graphene surface - both covalently and non-covalently - are crucial steps that define the sensitivity of graphene. The presence, reactivity, adsorption of gas and ions, proteins, DNA, cells and tissues on graphene have been successfully monitored with graphene. This review aims to unify most of the work done so far on biochemical sensing at the surface of a (chemically functionalized) graphene field-effect transistor and the challenges that lie ahead. The authors are convinced that graphene biochemical sensors hold great promise to meet the ever-increasing demand for sensitivity, especially looking at the recent progresses suggesting that the obstacle of Debye screening can be overcome.

20.
Nanoscale ; 8(44): 18646-18653, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27722521

RESUMEN

Chemically defined and electronically benign interfaces are attractive substrates for graphene and other two-dimensional materials. Here, we introduce lipid monolayers as an alternative, structurally ordered, and chemically versatile support for graphene. Deposition of graphene on the lipids resulted in a more ordered monolayer than regions without graphene. The lipids also offered graphene a more uniform and smoother support, reducing graphene hysteresis loop and the average value of the charge neutrality point under applied voltages. Our approach promises to be effective towards measuring experimentally biochemical phenomena within lipid monolayers and bilayers.


Asunto(s)
Grafito/química , Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...