Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
Nat Commun ; 15(1): 3904, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724502

RESUMEN

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Experimental , Vesículas Extracelulares , Fibroblastos , Queratinocitos , ARN Circular , Cicatrización de Heridas , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cicatrización de Heridas/efectos de los fármacos , Humanos , Masculino , Ratones , Ratas , Fibroblastos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , Piel/metabolismo , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
2.
Adv Mater ; : e2311845, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720198

RESUMEN

Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.

3.
Burns Trauma ; 12: tkae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699464

RESUMEN

Sebaceous glands (SGs), as holocrine-secreting appendages, lubricate the skin and play a central role in the skin barrier. Large full-thickness skin defects cause overall architecture disruption and SG loss. However, an effective strategy for SG regeneration is lacking. Organoids are 3D multicellular structures that replicate key anatomical and functional characteristics of in vivo tissues and exhibit great potential in regenerative medicine. Recently, considerable progress has been made in developing reliable procedures for SG organoids and existing SG organoids recapitulate the main morphological, structural and functional features of their in vivo counterparts. Engineering approaches empower researchers to manipulate cell behaviors, the surrounding environment and cell-environment crosstalk within the culture system as needed. These techniques can be applied to the SG organoid culture system to generate functionally more competent SG organoids. This review aims to provide an overview of recent advancements in SG organoid engineering. It highlights some potential strategies for SG organoid functionalization that are promising to forge a platform for engineering vascularized, innervated, immune-interactive and lipogenic SG organoids. We anticipate that this review will not only contribute to improving our understanding of SG biology and regeneration but also facilitate the transition of the SG organoid from laboratory research to a feasible clinical application.

4.
Front Oncol ; 14: 1301052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549933

RESUMEN

Background: Normal hepatic functional reserve is the key to avoiding liver failure after liver surgery. This study investigated the assessment of hepatic functional reserve using liver shear wave velocity (LSWV) combined with biochemical indicators, tumor volume, and portal vein diameter. Methods: In this single-center prospective study, a total of 123 patients with hepatocellular carcinoma (HCC) were divided into a test group (n=92) and a validation group (n=31). All patients were Child-Pugh grade A. The indocyanine green retention rate at 15 min (ICG-R15), liver shear wave velocity (LSWV), portal vein diameter (Dpv), alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GGT), albumin (ALB), prothrombin time (PT), and also liver tumor volume (maximum diameter ≤5 cm) were measured. In the test group, multiple parameters were used to evaluate hepatic functional reserve, and the multiparametric model was established. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance of the multiparametric model. In the validation group, the predictive effectiveness of the multiparametric model was analyzed using consistency tests. Results: It was revealed that LSWV, ALB, and PT were statistically significant in evaluation of the hepatic functional reserve (P<0.05). The multiparametric model was formulated as follows: Y= -18.954 + 9.726*LSWV-0.397*ALB+2.063*PT. The value of the area under the curve (AUC) for the multiparametric model was 0.913 (95% confidence interval (CI): 0.835-0.962, P< 0.01), with a cutoff value of 16.656 (sensitivity, 0.763; specificity, 0.926). The Kappa value of consistency testing was 0.655 (P<0.01). Conclusion: LSWV combined with ALB and PT exhibited a high predictive effectiveness for the assessment of hepatic functional reserve, assisting the clinical diagnosis and management of liver diseases.

5.
Bioeng Transl Med ; 9(2): e10630, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435816

RESUMEN

Hypertrophic scar formation is influenced by the intricate interplay between fibroblasts and endothelial cells. In this study, we investigated this relationship using in vitro and in vivo models. Clinical observations revealed distinct morphological changes and increased vascularity at pathological scar sites. Further analysis using OCTA, immunohistochemistry, and immunofluorescence confirmed the involvement of angiogenesis in scar formation. Our indirect co-culture systems demonstrated that endothelial cells enhance the proliferation and migration of fibroblasts through the secretion of cytokines including VEGF, PDGF, bFGF, and TGF-ß. Additionally, a suspended co-culture multicellular spheroid model revealed molecular-level changes associated with extracellular matrix remodeling, cellular behaviors, inflammatory response, and pro-angiogenic activity. Furthermore, KEGG pathway analysis identified the involvement of TGF-ß, IL-17, Wnt, Notch, PI3K-Akt, and MAPK pathways in regulating fibroblasts activity. These findings underscore the critical role of fibroblasts-endothelial cells crosstalk in scar formation and provide potential targets for therapeutic intervention. Understanding the molecular mechanisms underlying this interplay holds promise for the development of innovative approaches to treat tissue injuries and diseases.

6.
Diabetes Metab Res Rev ; 40(3): e3776, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402455

RESUMEN

Diabetic foot ulcer complicated with lower extremity vasculopathy is highly prevalent, slow healing and have a poor prognosis. The final progression leads to amputation, or may even be life-threatening, seriously affecting patients' quality of life. The treatment of lower extremity vasculopathy is the focus of clinical practice and is vital to improving the healing process of diabetic foot ulcers. Recently, a number of clinical trials on diabetic foot ulcers with lower extremity vasculopathy have been reported. A joint group of Chinese Medical Association (CMA) and Chinese Medical Doctor Association (CMDA) expert representatives reviewed and reached a consensus on the guidelines for the clinical diagnosis and treatment of this kind of disease. These guidelines are based on evidence from the literature and cover the pathogenesis of diabetic foot ulcers complicated with lower extremity vasculopathy and the application of new treatment approaches. These guidelines have been put forward to guide practitioners on the best approaches for screening, diagnosing and treating diabetic foot ulcers with lower extremity vasculopathy, with the aim of providing optimal, evidence-based management for medical personnel working with diabetic foot wound repair and treatment.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Úlcera del Pie , Glutamatos , Compuestos de Mostaza Nitrogenada , Humanos , Pie Diabético/complicaciones , Pie Diabético/diagnóstico , Pie Diabético/terapia , Consenso , Calidad de Vida , Extremidad Inferior
7.
Mil Med Res ; 11(1): 13, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369464

RESUMEN

Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.


Asunto(s)
Materiales Biocompatibles , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Piel/lesiones , Cicatriz/patología
8.
Adv Sci (Weinh) ; 11(12): e2306305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225741

RESUMEN

The scar repair inevitably causes damage of skin function and loss of skin appendages such as hair follicles (HF). It is of great challenge in wound repair that how to intervene in scar formation while simultaneously remodeling HF niche and inducing in situ HF regeneration. Here, chemical reprogramming techniques are used to identify a clinically chemical cocktail (Tideglusib and Tamibarotene) that can drive fibroblasts toward dermal papilla cell (DPC) fate. Considering the advantage of biomaterials in tissue repair and their regulation in cell behavior that may contributes to cellular reprogramming, the artificial HF seeding (AHFS) hydrogel microspheres, inspired by the natural processes of "seeding and harvest", are constructed via using a combination of liposome nanoparticle drug delivery system, photoresponsive hydrogel shell, positively charged polyamide modification, microfluidic and photocrosslinking techniques. The identified chemical cocktail is as the core nucleus of AHFS. In vitro and in vivo studies show that AHFS can regulate fibroblast fate, induce fibroblast-to-DPC reprogramming by activating the PI3K/AKT pathway, finally promoting wound healing and in situ HF regeneration while inhibiting scar formation in a two-pronged translational approach. In conclusion, AHFS provides a new and effective strategy for functional repair of skin wounds.


Asunto(s)
Folículo Piloso , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Cicatriz/patología , Regeneración/fisiología , Hidrogeles/farmacología , Microesferas , Fosfatidilinositol 3-Quinasas/farmacología
9.
Adv Sci (Weinh) ; 11(13): e2307761, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286650

RESUMEN

Delayed wound healing is a major complication of diabetes, and is associated with impaired cellular functions. Current treatments are unsatisfactory. Based on the previous reports on microRNA expression in small extracellular vesicles (sEVs), miR-17-5p-engineered sEVs (sEVs17-OE) and encapsulated them in gelatin methacryloyl (GelMA) hydrogel for diabetic wounds treatment are fabricated. SEVs17-OE are successfully fabricated with a 16-fold increase in miR-17-5p expression. SEVs17-OE inhibited senescence and promoted the proliferation, migration, and tube formation of high glucose-induced human umbilical vein endothelial cells (HG-HUVECs). Additionally, sEVs17-OE also performs a promotive effect on high glucose-induced human dermal fibroblasts (HG-HDFs). Mechanism analysis showed the expressions of p21 and phosphatase and tensin homolog (PTEN), as the target genes of miR-17-5p, are downregulated significantly by sEVs17-OE. Accordingly, the downstream genes and pathways of p21 and PTEN, are activated. Next, sEVs17-OE are loaded in GelMA hydrogel to fabricate a novel bioactive wound dressing and to evaluate their effects on diabetic wound healing. Gel-sEVs17-OE effectively accelerated wound healing by promoting angiogenesis and collagen deposition. The cellular mechanism may be associated with local cell proliferation. Therefore, a novel bioactive wound dressing by loading sEVs17-OE in GelMA hydrogel, offering an option for chronic wound management is successfully fabricated.


Asunto(s)
Diabetes Mellitus , Vesículas Extracelulares , Gelatina , Metacrilatos , MicroARNs , Cicatrización de Heridas , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Endoteliales , Vesículas Extracelulares/genética , Glucosa , Hidrogeles , MicroARNs/farmacología , MicroARNs/uso terapéutico , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Cicatrización de Heridas/genética , Complicaciones de la Diabetes/terapia , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética
10.
Small ; 20(8): e2305374, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37724002

RESUMEN

Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.


Asunto(s)
Cicatriz Hipertrófica , Exosomas , MicroARNs , Humanos , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Proliferación Celular/genética
11.
Int J Low Extrem Wounds ; 23(1): 63-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899578

RESUMEN

Wound healing is a complex and dynamic process involving a series of cellular and molecular events. Revascularization, the restoration of blood flow to ischemic or damaged tissue, is a key step in wound healing. Adequate vascularization has been recognized as a necessary factor for successful tissue regeneration. In the later stage of revascularization and tissue remodeling in wound healing, stem cells regulate other repair cells and matrix formation by influencing the maturation of blood vessels. The reductive oxidation (REDOX) state may be a key mechanism through stem/progenitor cells to influence endothelial cells to mature blood vessels and improve the quality of healing. Mitochondria may play an important role in this process.


Asunto(s)
Células Endoteliales , Piel , Humanos , Cicatrización de Heridas/fisiología , Células Madre
15.
Burns Trauma ; 11: tkad010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860579

RESUMEN

Background: Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms. Methods: P-MSC-EVs were isolated by differential ultracentrifugation and locally injected into the full-thickness skin wounds of diabetic mice, to observe the beneficial effects on wound healing in vivo by measuring wound closure rates and histological analysis. Next, a series of assays were conducted to evaluate the effects of low (2.28 x 1010 particles/ml) and high (4.56 x 1010 particles/ml) concentrations of P-MSC-EVs on the senescence, proliferation, migration, and apoptosis of HG-induced senescent HDFs in vitro. Then, miRNA microarrays and real-time quantitative PCR (RT-qPCR) were carried out to detect the differentially expressed miRNAs in HDFs after EVs treatment. Specific RNA inhibitors, miRNA mimics, and small interfering RNA (siRNA) were used to evaluate the role of a candidate miRNA and its target genes in P-MSC-EV-induced improvements in the function of HG-induced senescent HDFs. Results: Local injection of P-MSC-EVs into diabetic wounds accelerated wound closure and reduced scar widths, with better-organized collagen deposition and decreased p16INK4a expression. In vitro, P-MSC-EVs enhanced the antisenescence, proliferation, migration, and antiapoptotic abilities of HG-induced senescent fibroblasts in a dose-dependent manner. MiR-145-5p was found to be highly enriched in P-MSC-EVs. MiR-145-5p inhibitors effectively attenuated the P-MSC-EV-induced functional improvements of senescent fibroblasts. MiR-145-5p mimics simulated the effects of P-MSC-EVs on functional improvements of fibroblasts by suppressing the expression of cyclin-dependent kinase inhibitor 1A and activating the extracellular signal regulated kinase (Erk)/protein kinase B (Akt) signaling pathway. Furthermore, local application of miR-145-5p agomir mimicked the effects of P-MSC-EVs on wound healing. Conclusions: These results suggest that P-MSC-EVs accelerate diabetic wound healing by improving the function of senescent fibroblasts through the transfer of miR-145-5p, which targets cyclin-dependent kinase inhibitor 1A to activate the Erk/Akt signaling pathway. P-MSC-EVs are promising therapeutic candidates for diabetic wound treatment.

18.
Burns Trauma ; 11: tkad032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397510

RESUMEN

Background: Eccrine sweat gland (SG) plays a crucial role in thermoregulation but exhibits very limited regenerative potential. Although SG lineage-restricted niches dominate SG morphogenesis and benefit SG regeneration, rebuilding niches in vivo is challenging for stem cell therapeutic applications. Hence, we attempted to screen and tune the critical niche-responding genes that dually respond to both biochemical and structural cues, which might be a promising strategy for SG regeneration. Methods: An artificial SG lineage-restricted niche consisting of mouse plantar dermis homogenates (i.e. biochemical cues) and 3D architecture (i.e. structural cues) was built in vitro by using an extrusion-based 3D bioprinting approach. Mouse bone marrow-derived mesenchymal stem cells (MSCs) were then differentiated into the induced SG cells in the artificial SG lineage-restricted niche. To decouple biochemical cues from structural cues, the transcriptional changes aroused by pure biochemical cues, pure structural cues and synergistic effects of both cues were analyzed pairwise, respectively. Notably, only niche-dual-responding genes that are differentially expressed in response to both biochemical and structural cues and participate in switching MSC fates towards SG lineage were screened out. Validations in vitro and in vivo were respectively conducted by inhibiting or activating the candidate niche-dual-responding gene(s) to explore the consequent effects on SG differentiation. Results: Notch4 is one of the niche-dual-responding genes that enhanced MSC stemness and promoted SG differentiation in 3D-printed matrix in vitro. Furthermore, inhibiting Notch4 specifically reduced keratin 19-positive epidermal stem cells and keratin 14-positive SG progenitor cells, thus further delaying embryonic SG morphogenesis in vivo. Conclusions: Notch4 not only participates in mouse MSC-induced SG differentiation in vitro but is also implicated in mouse eccrine SG morphogenesis in vivo.

19.
Burns Trauma ; 11: tkad027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397511

RESUMEN

Background: Promoting rapid wound healing with functional recovery of all skin appendages is the main goal of regenerative medicine. So far current methodologies, including the commonly used back excisional wound model (BEWM) and paw skin scald wound model, are focused on assessing the regeneration of either hair follicles (HFs) or sweat glands (SwGs). How to achieve de novo appendage regeneration by synchronized evaluation of HFs, SwGs and sebaceous glands (SeGs) is still challenging. Here, we developed a volar skin excisional wound model (VEWM) that is suitable for examining cutaneous wound healing with multiple-appendage restoration, as well as innervation, providing a new research paradigm for the perfect regeneration of skin wounds. Methods: Macroscopic observation, iodine-starch test, morphological staining and qRT-PCR analysis were used to detect the existence of HFs, SwGs, SeGs and distribution of nerve fibres in the volar skin. Wound healing process monitoring, HE/Masson staining, fractal analysis and behavioral response assessment were performed to verify that VEWM could mimic the pathological process and outcomes of human scar formation and sensory function impairment. Results: HFs are limited to the inter-footpads. SwGs are densely distributed in the footpads, scattered in the IFPs. The volar skin is richly innervated. The wound area of the VEWM at 1, 3, 7 and 10 days after the operation is respectively 89.17% ± 2.52%, 71.72% ± 3.79%, 55.09 % ± 4.94% and 35.74% ± 4.05%, and the final scar area accounts for 47.80% ± 6.22% of the initial wound. While the wound area of BEWM at 1, 3, 7 and 10 days after the operation are respectively 61.94% ± 5.34%, 51.26% ± 4.89%, 12.63% ± 2.86% and 6.14% ± 2.84%, and the final scar area accounts for 4.33% ± 2.67% of the initial wound. Fractal analysis of the post-traumatic repair site for VEWM vs human was performed: lacunarity values, 0.040 ± 0.012 vs 0.038 ± 0.014; fractal dimension values, 1.870 ± 0.237 vs 1.903 ± 0.163. Sensory nerve function of normal skin vs post-traumatic repair site was assessed: mechanical threshold, 1.05 ± 0.52 vs 4.90 g ± 0.80; response rate to pinprick, 100% vs 71.67% ± 19.92%, and temperature threshold, 50.34°C ± 3.11°C vs 52.13°C ± 3.54°C. Conclusions: VEWM closely reflects the pathological features of human wound healing and can be applied for skin multiple-appendages regeneration and innervation evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...