Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548388

RESUMEN

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.

2.
BMC Plant Biol ; 22(1): 609, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36564721

RESUMEN

BACKGROUND: Anthocyanins are widely applied as a marker for haploid identification after haploid induction in maize. However, the factors affecting anthocyanin biosynthesis in immature embryos and the genes regulating this process remain unclear. RESULTS: In this study, we analyzed the influence of genetic background of the male and female parents, embryo age and light exposure on anthocyanin accumulation in embryos. The results showed that light exposure was the most crucial factor enhancing the pigmentation of immature embryos. The identification accuracy of haploid embryos reached 96.4% after light exposure, but was only 11.0% following dark treatment. The total anthocyanin content was 7-fold higher in immature embryos cultured for 24 h under light conditions compared to embryos cultured in the dark. Transcriptome analysis revealed that the differentially expressed genes between immature embryos cultured for 24 h in dark and light chambers were significantly enriched in the pathways of flavonoid, flavone, flavonol and anthocyanin biosynthesis. Among the genes involved in anthocyanin biosynthesis, five up-regulated genes were identified: F3H, DFR, ANS, F3'H and the MYB transcription factor-encoding gene C1. The expression patterns of 14 selected genes were confirmed using quantitative reverse transcription-polymerase chain reaction. CONCLUSION: Light is the most important factor facilitating anthocyanin accumulation in immature embryos. After 24 h of exposure to light, the expression levels of the structural genes F3H, DFR, ANS, F3'H and transcription factor gene C1 were significantly up-regulated. This study provides new insight into the factors and key genes regulating anthocyanin biosynthesis in immature embryos, and supports improved efficiency of immature haploid embryo selection during doubled haploid breeding of maize.


Asunto(s)
Antocianinas , Zea mays , Antocianinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Diploidia , Fitomejoramiento , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 13: 878809, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720580

RESUMEN

Iron (Fe) is an essential trace element for almost all organisms and is often the major limiting nutrient for normal growth. Fe deficiency is a worldwide agricultural problem, which affects crop productivity and product quality. Understanding the Fe-deficiency response in plants is necessary for improving both plant health and the human diet. In this study, Fe-efficient (Ye478) and Fe-inefficient maize inbred lines (Wu312) were used to identify the genotypic difference in response to low Fe stress during different developmental stages and to further determine the optimal Fe-deficient Fe(II) supply level which leads to the largest phenotypic difference between Ye478 and Wu312. Then, genome-wide association analysis was performed to further identify candidate genes associated with the molecular mechanisms under different Fe nutritional statuses. Three candidate genes involved in Fe homeostasis of strategy II plants (strategy II genes) were identified, including ZmDMAS1, ZmNAAT1, and ZmYSL11. Furthermore, candidate genes ZmNAAT1, ZmDMAS1, and ZmYSL11 were induced in Fe-deficient roots and shoots, and the expression of ZmNAAT1 and ZmDMAS1 responded to Fe deficiency more in shoots than in roots. Beyond that, several genes that may participate in Fe homeostasis of strategy I plants (strategy I genes) were identified, which were either encoding Fe transporters (ZmIRT1 and ZmZIP4), or acting as essential ethylene signal transducers (ZmEBF1). Interestingly, ZmIRT1, ZmZIP4, and ZmEBF1 were significantly upregulated under low Fe stress, suggesting that these genes may be involved in Fe-deficiency tolerance in maize which is considered as strategy II plant. This study demonstrates the use of natural variation in the association population to identify important genes associated with Fe-deficiency tolerance and may further provide insights for understanding the molecular mechanism underlying the tolerance to Fe-deficiency stress in maize.

4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563244

RESUMEN

Zinc (Zn) deficiency is one of the most common micronutrient disorders in cereal plants, greatly impairing crop productivity and nutritional quality. Identifying the genes associated with Zn deficiency tolerance is the basis for understanding the genetic mechanism conferring tolerance. In this study, the K22×BY815 and DAN340×K22 recombination inbred line (RIL) populations, which were derived from Zn-inefficient and Zn-efficient inbred lines, were utilized to detect the quantitative trait loci (QTLs) associated with Zn deficiency tolerance and to further identify candidate genes within these loci. The BLUP (Best Linear Unbiased Prediction) values under Zn-deficient condition (-Zn) and the ratios of the BLUP values under Zn deficient condition to the BLUP values under Zn-sufficient condition (-Zn/CK) were used to perform linkage mapping. In QTL analysis, 21 QTLs and 33 QTLs controlling the Zn score, plant height, shoot and root dry weight, and root-to-shoot ratio were detected in the K22×BY815 population and the DAN340×K22 population, explaining 5.5-16.6% and 4.2-23.3% of phenotypic variation, respectively. In addition, seventeen candidate genes associated with the mechanisms underlying Zn deficiency tolerance were identified in QTL colocalizations or the single loci, including the genes involved in the uptake, transport, and redistribution of Zn (ZmIRT1, ZmHMAs, ZmNRAMP6, ZmVIT, ZmNAS3, ZmDMAS1, ZmTOM3), and the genes participating in the auxin and ethylene signal pathways (ZmAFBs, ZmIAA17, ZmETR, ZmEIN2, ZmEIN3, ZmCTR3, ZmEBF1). Our findings will broaden the understanding of the genetic structure of the tolerance to Zn deficiency in maize.


Asunto(s)
Zea mays , Zinc , Mapeo Cromosómico , Fenotipo , Sitios de Carácter Cuantitativo , Recombinación Genética , Zea mays/genética , Zea mays/metabolismo , Zinc/metabolismo
5.
Front Plant Sci ; 13: 855572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528939

RESUMEN

Iron (Fe) is a mineral micronutrient for plants, and Fe deficiency is a major abiotic stress in crop production because of its low solubility under aerobic and alkaline conditions. In this study, 18 maize inbred lines were used to preliminarily illustrate the physiological mechanism underlying Fe deficiency tolerance. Then biparental linkage analysis was performed to identify the quantitative trait loci (QTLs) and candidate genes associated with Fe deficiency tolerance using the recombinant inbred line (RIL) population derived from the most Fe-efficient (Ye478) and Fe-inefficient (Wu312) inbred lines. A total of 24 QTLs was identified under different Fe nutritional status in the Ye478 × Wu312 RIL population, explaining 6.1-26.6% of phenotypic variation, and ten candidate genes were identified. Plants have evolved two distinct mechanisms to solubilize and transport Fe to acclimate to Fe deficiency, including reduction-based strategy (strategy I) and chelation-based strategy (strategy II), and maize uses strategy II. However, not only genes involved in Fe homeostasis verified in strategy II plants (strategy II genes), which included ZmYS1, ZmYS3, and ZmTOM2, but also several genes associated with Fe homeostasis in strategy I plants (strategy I genes) were identified, including ZmFIT, ZmPYE, ZmILR3, ZmBTS, and ZmEIN2. Furthermore, strategy II gene ZmYS1 and strategy I gene ZmBTS were significantly upregulated in the Fe-deficient roots and shoots of maize inbred lines, and responded to Fe deficiency more in shoots than in roots. Under Fe deficiency, greater upregulations of ZmYS1 and ZmBTS were observed in Fe-efficient parent Ye478, not in Fe-inefficient parent Wu312. Beyond that, ZmEIN2 and ZmILR3, were found to be Fe deficiency-inducible in the shoots. These findings indicate that these candidate genes may be associated with Fe deficiency tolerance in maize. This study demonstrates the use of natural variation to identify important Fe deficiency-regulated genes and provides further insights for understanding the response to Fe deficiency stress in maize.

6.
BMC Plant Biol ; 21(1): 344, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289812

RESUMEN

BACKGROUND: Maize (Zea mays ssp. mays) is the most abundantly cultivated and highly valued food commodity in the world. Oil from maize kernels is highly nutritious and important for the diet and health of humans, and it can be used as a source of bioenergy. A better understanding of genetic basis for maize kernel oil can help improve the oil content and quality when applied in breeding. RESULTS: In this study, a KUI3/SC55 recombinant inbred line (RIL) population, consisting of 180 individuals was constructed from a cross between inbred lines KUI3 and SC55. We phenotyped 19 oil-related traits and subsequently dissected the genetic architecture of oil-related traits in maize kernels based on a high-density genetic map. In total, 62 quantitative trait loci (QTLs), with 2 to 5 QTLs per trait, were detected in the KUI3/SC55 RIL population. Each QTL accounted for 6.7% (qSTOL1) to 31.02% (qBELI6) of phenotypic variation and the total phenotypic variation explained (PVE) of all detected QTLs for each trait ranged from 12.5% (OIL) to 52.5% (C16:0/C16:1). Of all these identified QTLs, only 5 were major QTLs located in three genomic regions on chromosome 6 and 9. In addition, two pairs of epistatic QTLs with additive effects were detected and they explained 3.3 and 2.4% of the phenotypic variation, respectively. Colocalization with a previous GWAS on oil-related traits, identified 19 genes. Of these genes, two important candidate genes, GRMZM2G101515 and GRMZM2G022558, were further verified to be associated with C20:0/C22:0 and C18:0/C20:0, respectively, according to a gene-based association analysis. The first gene encodes a kinase-related protein with unknown function, while the second gene encodes fatty acid elongase 2 (fae2) and directly participates in the biosynthesis of very long chain fatty acids in Arabidopsis. CONCLUSIONS: Our results provide insights on the genetic basis of oil-related traits and a theoretical basis for improving maize quality by marker-assisted selection.


Asunto(s)
Aceite de Maíz/genética , Aceite de Maíz/metabolismo , Productos Agrícolas/genética , Zea mays/genética , Mapeo Cromosómico , Marcadores Genéticos , Variación Genética , Genotipo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
7.
Plant Biotechnol J ; 19(11): 2192-2205, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34077617

RESUMEN

Starch is the most abundant storage carbohydrate in maize kernels and provides calories for humans and other animals as well as raw materials for various industrial applications. Decoding the genetic basis of natural variation in kernel starch content is needed to manipulate starch quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage mapping, joint linkage mapping and a genome-wide association study in a multi-parent population containing six recombinant inbred line populations. Only five QTLs explained over 10% of phenotypic variation in single populations. In addition to a few large-effect and many small-effect additive QTLs, limited pairs of epistatic QTLs also contributed to the genetic basis of the variation in kernel starch content. A regional association study identified five non-starch-pathway genes that were the causal candidate genes underlying the identified QTLs for starch content. The pathway-driven analysis identified ZmTPS9, which encodes a trehalose-6-phosphate synthase in the trehalose pathway, as the causal gene for the QTL qSTA4-2, which was detected by all three statistical analyses. Knockout of ZmTPS9 increased kernel starch content and, in turn, kernel weight in maize, suggesting potential applications for ZmTPS9 in maize starch and yield improvement. These findings extend our knowledge about the genetic basis of starch content in maize kernels and provide valuable information for maize genetic improvement of starch quantity and quality.


Asunto(s)
Almidón , Zea mays , Mapeo Cromosómico , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Fenotipo , Sitios de Carácter Cuantitativo/genética , Zea mays/genética
8.
Sci Rep ; 10(1): 1677, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015470

RESUMEN

Plant seed germination is a crucial developmental event that has significant effects on seedling establishment and yield production. This process is controlled by multiple intrinsic signals, particularly phytohormones. The gaseous hormone ethylene stimulates seed germination; however, the genetic basis of ethylene production in maize during seed germination remains poorly understood. In this study, we quantified the diversity of germination among 14 inbred lines representing the parental materials corresponding to multiple recombinant inbred line (RIL) mapping populations. Quantitative trait loci (QTLs) controlling ethylene production were then identified in germinating seeds from an RIL population constructed from two parental lines showing differences in both germination speed and ethylene production during germination. To explore the possible genetic correlations of ethylene production with other traits, seed germination and seed weight were evaluated using the same batch of samples. On the basis of high-density single nucleotide polymorphism-based genetic linkage maps, we detected three QTLs for ethylene production in germinating seeds, three QTLs for seed germination, and four QTLs for seed weight, with each QTL explaining 5.8%-13.2% of the phenotypic variation of the trait. No QTLs were observed to be co-localized, suggesting that the genetic bases underlying the three traits are largely different. Our findings reveal three chromosomal regions responsible for ethylene production during seed germination, and provide a valuable reference for the future investigation of the genetic mechanism underlying the role of the stress hormone ethylene in maize germination control under unfavourable external conditions.


Asunto(s)
Etilenos/metabolismo , Germinación/genética , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Zea mays/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Ligamiento Genético/genética , Genotipo , Fenotipo , Plantones/genética
9.
Plant J ; 101(2): 278-292, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529523

RESUMEN

The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait-locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance-relative transposable element (TE) in intron 1 of DXS2, which encoded a rate-limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.


Asunto(s)
Domesticación , Fenotipo , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Agricultura , Carotenoides , Mapeo Cromosómico , Cromosomas de las Plantas , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Intrones , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...