Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37943649

RESUMEN

With high temporal resolution, high dynamic range, and low latency, event cameras have made great progress in numerous low-level vision tasks. To help restore low-quality (LQ) video sequences, most existing event-based methods usually employ convolutional neural networks (CNNs) to extract sparse event features without considering the spatial sparse distribution or the temporal relation in neighboring events. It brings about insufficient use of spatial and temporal information from events. To address this problem, we propose a new spiking-convolutional network (SC-Net) architecture to facilitate event-driven video restoration. Specifically, to properly extract the rich temporal information contained in the event data, we utilize a spiking neural network (SNN) to suit the sparse characteristics of events and capture temporal correlation in neighboring regions; to make full use of spatial consistency between events and frames, we adopt CNNs to transform sparse events as an extra brightness prior to being aware of detailed textures in video sequences. In this way, both the temporal correlation in neighboring events and the mutual spatial information between the two types of features are fully explored and exploited to accurately restore detailed textures and sharp edges. The effectiveness of the proposed network is validated in three representative video restoration tasks: deblurring, super-resolution, and deraining. Extensive experiments on synthetic and real-world benchmarks have illuminated that our method performs better than existing competing methods.

2.
Comput Biol Med ; 167: 107605, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925907

RESUMEN

Magnetic resonance imaging (MRI) Super-Resolution (SR) aims to obtain high resolution (HR) images with more detailed information for precise diagnosis and quantitative image analysis. Deep unfolding networks outperform general MRI SR reconstruction methods by providing better performance and improved interpretability, which enhance the trustworthiness required in clinical practice. Additionally, current SR reconstruction techniques often rely on a single contrast or a simple multi-contrast fusion mechanism, ignoring the complex relationships between different contrasts. To address these issues, in this paper, we propose a Model-Guided multi-contrast interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction, which explicitly incorporates the well-studied multi-contrast MRI observation model into an unfolding iterative network. Specifically, we manually design an objective function for MGDUN that can be iteratively computed by the half-quadratic splitting algorithm. The iterative MGDUN algorithm is unfolded into a special model-guided deep unfolding network that explicitly takes into account both the multi-contrast relationship matrix and the MRI observation matrix during the end-to-end optimization process. Extensive experimental results on the multi-contrast IXI dataset and the BraTs 2019 dataset demonstrate the superiority of our proposed model, with PSNR reaching 37.3366 and 35.9690 respectively. Our proposed MGDUN provides a promising solution for multi-contrast MR image super-resolution reconstruction. Code is available at https://github.com/yggame/MGDUN.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador
3.
Artículo en Inglés | MEDLINE | ID: mdl-37220051

RESUMEN

Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR.

4.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 9534-9551, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37022385

RESUMEN

Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.


Asunto(s)
Algoritmos , Encéfalo , Memoria
5.
IEEE Trans Neural Netw Learn Syst ; 34(3): 1513-1523, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34460396

RESUMEN

The goal of hyperspectral image fusion (HIF) is to reconstruct high spatial resolution hyperspectral images (HR-HSI) via fusing low spatial resolution hyperspectral images (LR-HSI) and high spatial resolution multispectral images (HR-MSI) without loss of spatial and spectral information. Most existing HIF methods are designed based on the assumption that the observation models are known, which is unrealistic in many scenarios. To address this blind HIF problem, we propose a deep learning-based method that optimizes the observation model and fusion processes iteratively and alternatively during the reconstruction to enforce bidirectional data consistency, which leads to better spatial and spectral accuracy. However, general deep neural network inherently suffers from information loss, preventing us to achieve this bidirectional data consistency. To settle this problem, we enhance the blind HIF algorithm by making part of the deep neural network invertible via applying a slightly modified spectral normalization to the weights of the network. Furthermore, in order to reduce spatial distortion and feature redundancy, we introduce a Content-Aware ReAssembly of FEatures module and an SE-ResBlock model to our network. The former module helps to boost the fusion performance, while the latter make our model more compact. Experiments demonstrate that our model performs favorably against compared methods in terms of both nonblind HIF fusion and semiblind HIF fusion.

6.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 12978-12995, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35709118

RESUMEN

Existing deep learning based de-raining approaches have resorted to the convolutional architectures. However, the intrinsic limitations of convolution, including local receptive fields and independence of input content, hinder the model's ability to capture long-range and complicated rainy artifacts. To overcome these limitations, we propose an effective and efficient transformer-based architecture for the image de-raining. First, we introduce general priors of vision tasks, i.e., locality and hierarchy, into the network architecture so that our model can achieve excellent de-raining performance without costly pre-training. Second, since the geometric appearance of rainy artifacts is complicated and of significant variance in space, it is essential for de-raining models to extract both local and non-local features. Therefore, we design the complementary window-based transformer and spatial transformer to enhance locality while capturing long-range dependencies. Besides, to compensate for the positional blindness of self-attention, we establish a separate representative space for modeling positional relationship, and design a new relative position enhanced multi-head self-attention. In this way, our model enjoys powerful abilities to capture dependencies from both content and position, so as to achieve better image content recovery while removing rainy artifacts. Experiments substantiate that our approach attains more appealing results than state-of-the-art methods quantitatively and qualitatively.

7.
Comput Biol Med ; 150: 106078, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36155266

RESUMEN

Resting-state Magnetic resonance imaging-based parcellation aims to group the voxels/vertices non-invasively based on their connectivity profiles, which has achieved great success in understanding the fundamental organizational principles of the human brain. Given the substantial inter-individual variability, the increasing number of studies focus on individual parcellation. However, current methods perform individual parcellations independently or are based on the group prior, requiring expensive computational costs, precise parcel alignment, and extra group information. In this work, an efficient and flexible parcellation framework of individual cerebral cortex was proposed based on a region growing algorithm by merging the unassigned and neighbor vertex with the highest-correlated parcel iteratively. It considered both consistency with prior atlases and individualized functional homogeneity of parcels, which can be applied to a single individual without parcel alignment and group information. The proposed framework was leveraged to 100 unrelated subjects for functional homogeneity comparison and individual identification, and 186 patients with Parkison's disease for symptom prediction. Results demonstrated our framework outperformed other methods in functional homogeneity, and the generated parcellations provided 100% individual identification accuracy. Moreover, the default mode network (DMN) exhibited higher functional homogeneity, intra-subject parcel reproducibility and fingerprinting accuracy, while the sensorimotor network did the opposite, reflecting that the DMN is the most representative, stable, and individual-identifiable network in the resting state. The correlation analysis showed that the severity of the disease symptoms was related negatively to the similarity of individual parcellation and the atlases of healthy populations. The disease severity can be correctly predicted using machine learning models based on individual topographic features such as parcel similarity and parcel size. In summary, the proposed framework not only significantly improves the functional homogeneity but also captures individualized and disease-related brain topography, serving as a potential tool to explore brain function and disease in the future.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen
8.
IEEE J Biomed Health Inform ; 26(11): 5641-5652, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35930507

RESUMEN

Connectivity-based brain region parcellation from functional magnetic resonance imaging (fMRI) data is complicated by heterogeneity among aged and diseased subjects, particularly when the data are spatially transformed to a common space. Here, we propose a group-guided functional brain region parcellation model capable of obtaining subregions from a target region with consistent connectivity profiles across multiple subjects, even when the fMRI signals are kept in their native spaces. The model is based on a joint constrained canonical correlation analysis (JC-CCA) method that achieves group-guided parcellation while allowing the data dimension of the parcellated regions for each subject to vary. We performed extensive experiments on synthetic and real data to demonstrate the superiority of the proposed model compared to other classical methods. When applied to fMRI data of subjects with and without Parkinson's disease (PD) to estimate the subregions in the Putamen, significant between-group differences were found in the derived subregions and the connectivity patterns. Superior classification and regression results were obtained, demonstrating its potential in clinical practice.


Asunto(s)
Mapeo Encefálico , Enfermedad de Parkinson , Humanos , Anciano , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
9.
IEEE Trans Med Imaging ; 41(12): 3734-3746, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35905070

RESUMEN

Serial section transmission electron micro-scopy (ssTEM) reveals biological information at a scale of nanometer and plays an important role in the ultrastructural analysis. However, due to the imperfect preparation of biological samples, ssTEM images are usually degraded with various artifacts that greatly challenge the subsequent analysis and visualization. In this paper, we introduce a unified deep learning framework for ssTEM image restoration which addresses three main types of artifacts, i.e., Support Film Folds (SFF), Staining Precipitates (SP), and Missing Sections (MS). To achieve this goal, we first model the appearance of SFF and SP artifacts by conducting comprehensive analyses on the statistics of real degraded images, relying on which we can then simulate a large number of paired images (degraded/artifacts-free) for training a deep restoration network. Then, we design a coarse-to-fine restoration network consisting of three modules, i.e., interpolation, correction, and fusion. The interpolation module exploits the adjacent artifacts-free images for an initial restoration, while the correction module resorts to the degraded image itself to rectify the artifacts. Finally, the fusion module jointly utilizes the above two results to further improve the restoration fidelity. Experimental results on both synthetic and real test data validate the significantly improved performance of our proposed framework over existing solutions, in terms of both image restoration fidelity and neuron segmentation accuracy. To the best of our knowledge, this is the first unified deep learning framework for ssTEM image restoration from different types of artifacts. Code is available at https://github.com/sydeng99/ssTEM-restoration.


Asunto(s)
Aprendizaje Profundo , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
10.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6802-6816, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34081590

RESUMEN

Deep learning-based methods have achieved notable progress in removing blocking artifacts caused by lossy JPEG compression on images. However, most deep learning-based methods handle this task by designing black-box network architectures to directly learn the relationships between the compressed images and their clean versions. These network architectures are always lack of sufficient interpretability, which limits their further improvements in deblocking performance. To address this issue, in this article, we propose a model-driven deep unfolding method for JPEG artifacts removal, with interpretable network structures. First, we build a maximum posterior (MAP) model for deblocking using convolutional dictionary learning and design an iterative optimization algorithm using proximal operators. Second, we unfold this iterative algorithm into a learnable deep network structure, where each module corresponds to a specific operation of the iterative algorithm. In this way, our network inherits the benefits of both the powerful model ability of data-driven deep learning method and the interpretability of traditional model-driven method. By training the proposed network in an end-to-end manner, all learnable modules can be automatically explored to well characterize the representations of both JPEG artifacts and image content. Experiments on synthetic and real-world datasets show that our method is able to generate competitive or even better deblocking results, compared with state-of-the-art methods both quantitatively and qualitatively.

11.
IEEE Trans Neural Netw Learn Syst ; 32(5): 2090-2104, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32484781

RESUMEN

We introduce a new deep detail network architecture with grouped multiscale dilated convolutions to sharpen images contain multiband spectral information. Specifically, our end-to-end network directly fuses low-resolution multispectral and panchromatic inputs to produce high-resolution multispectral results, which is the same goal of the pansharpening in remote sensing. The proposed network architecture is designed by utilizing our domain knowledge and considering the two aims of the pansharpening: spectral and spatial preservations. For spectral preservation, the up-sampled multispectral images are directly added to the output for lossless spectral information propagation. For spatial preservation, we train the proposed network in the high-frequency domain instead of the commonly used image domain. Different from conventional network structures, we remove pooling and batch normalization layers to preserve spatial information and improve generalization to new satellites, respectively. To effectively and efficiently obtain multiscale contextual features at a fine-grained level, we propose a grouped multiscale dilated network structure to enlarge the receptive fields for each network layer. This structure allows the network to capture multiscale representations without increasing the parameter burden and network complexity. These representations are finally utilized to reconstruct the residual images which contain spatial details of PAN. Our trained network is able to generalize different satellite images without the need for parameter tuning. Moreover, our model is a general framework, which can be directly used for other kinds of multiband spectral image sharpening, e.g., hyperspectral image sharpening. Experiments show that our model performs favorably against compared methods in terms of both qualitative and quantitative qualities.

12.
Front Neurosci ; 15: 828512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185454

RESUMEN

Autism Spectrum Disorder (ASD) is one common developmental disorder with great variations in symptoms and severity, making the diagnosis of ASD a challenging task. Existing deep learning models using brain connectivity features to classify ASD still suffer from degraded performance for multi-center data due to limited feature representation ability and insufficient interpretability. Given that Graph Convolutional Network (GCN) has demonstrated superiority in learning discriminative representations of brain connectivity networks, in this paper, we propose an invertible dynamic GCN model to identify ASD and investigate the alterations of connectivity patterns associated with the disease. In order to select explainable features from the model, invertible blocks are introduced in the whole network, and we are able to reconstruct the input dynamic features from the network's output. A pre-screening of connectivity features is adopted to reduce the redundancy of the input information, and a fully-connected layer is added to perform classification. The experimental results on 867 subjects show that our proposed method achieves superior disease classification performance. It provides an interpretable deep learning model for brain connectivity analysis and is of great potential in studying brain-related disorders.

13.
IEEE Trans Neural Netw Learn Syst ; 32(11): 5034-5046, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290230

RESUMEN

Many computer vision tasks, such as monocular depth estimation and height estimation from a satellite orthophoto, have a common underlying goal, which is regression of dense continuous values for the pixels given a single image. We define them as dense continuous-value regression (DCR) tasks. Recent approaches based on deep convolutional neural networks significantly improve the performance of DCR tasks, particularly on pixelwise regression accuracy. However, it still remains challenging to simultaneously preserve the global structure and fine object details in complex scenes. In this article, we take advantage of the efficiency of Laplacian pyramid on representing multiscale contents to reconstruct high-quality signals for complex scenes. We design a Laplacian pyramid neural network (LAPNet), which consists of a Laplacian pyramid decoder (LPD) for signal reconstruction and an adaptive dense feature fusion (ADFF) module to fuse features from the input image. More specifically, we build an LPD to effectively express both global and local scene structures. In our LPD, the upper and lower levels, respectively, represent scene layouts and shape details. We introduce a residual refinement module to progressively complement high-frequency details for signal prediction at each level. To recover the signals at each individual level in the pyramid, an ADFF module is proposed to adaptively fuse multiscale image features for accurate prediction. We conduct comprehensive experiments to evaluate a number of variants of our model on three important DCR tasks, i.e., monocular depth estimation, single-image height estimation, and density map estimation for crowd counting. Experiments demonstrate that our method achieves new state-of-the-art performance in both qualitative and quantitative evaluation on the NYU-D V2 and KITTI for monocular depth estimation, the challenging Urban Semantic 3D (US3D) for satellite height estimation, and four challenging benchmarks for crowd counting. These results demonstrate that the proposed LAPNet is a universal and effective architecture for DCR problems.


Asunto(s)
Aprendizaje Profundo/tendencias , Procesamiento de Imagen Asistido por Computador/tendencias , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/tendencias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos
14.
IEEE Trans Neural Netw Learn Syst ; 31(6): 1794-1807, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31329133

RESUMEN

Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.

15.
IEEE Trans Image Process ; 28(12): 6141-6153, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31295112

RESUMEN

Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of model parameters. The feature sharing unit combines with a data fidelity unit to comprise an inference block, which are then cascaded with dense connections, allowing for efficient information transmission across different depths of the network. Experiments on various multi-contrast MRI datasets show that the proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We demonstrate that improved reconstruction quality can bring benefits to subsequent medical image analysis. Furthermore, the robustness of the proposed model to misregistration shows its potential in real MRI applications.


Asunto(s)
Compresión de Datos/métodos , Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Medios de Contraste , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad
16.
IEEE Trans Image Process ; 24(12): 4965-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26336125

RESUMEN

In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than the logarithmic domain. A maximum a posteriori (MAP) formulation is employed with priors of both illumination and reflectance. To estimate illumination and reflectance effectively, an alternating direction method of multipliers is adopted to solve the MAP problem. The experimental results show the satisfactory performance of the proposed method to obtain reflectance and illumination with visually pleasing enhanced results and a promising convergence rate. Compared with other testing methods, the proposed method yields comparable or better results on both subjective and objective assessments.

17.
IEEE Trans Image Process ; 23(12): 5007-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25265609

RESUMEN

We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Inteligencia Artificial , Encéfalo/anatomía & histología , Humanos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA