Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Entropy (Basel) ; 26(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248174

RESUMEN

The detection of instability inception is favorable to avoid compressor instability. In this paper, a multiscale entropy-based feature extraction is developed for the detection of the instability inception in axial compressors. Nonlinear and statistical features of the short-time instability inception are extracted by generally combining multiscale entropy and statistical features. First, nonlinear features are extracted by refined composite multiscale entropy to avoid the inaccurate estimation or undefined entropy of multiscale entropy for short time series. Second, the time-domain-based statistical features are chosen to capture more information on instability inception, and the dominant statistical features are determined by random forests implemented with the mean decrease accuracy algorithm at each time scale. The obtained refined composite dominant statistical features are regarded as weighting factors and integrated with the refined composite multiscale entropy to generate a combined feature. Finally, numerical simulation results on two synthetic noise datasets and a compressor instability model dataset are presented to demonstrate the effectiveness, efficiency, and robustness of the combined features under different conditions.

2.
Angew Chem Int Ed Engl ; 63(5): e202317626, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085222

RESUMEN

Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and ß-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.

3.
J Hazard Mater ; 459: 132214, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37544174

RESUMEN

Copper (Cu) is vital for plant growth but becomes toxic in excess, posing potential threats to human health. Although receptor-like kinases (RLKs) have been studied in plant response to abiotic stresses, their roles in Cu stress response remain poorly understood. Therefore, we aimed to evaluate Cu toxicity effects on rice and elucidate its potential molecular mechanisms. Specifically, rice lectin-type RLK OsCORK1 (Copper-response receptor-like kinase 1) function in Cu stress response was investigated. RNA sequencing and expression assays revealed that OsCORK1 is mainly expressed in roots and leaves, and its expression was significantly induced by Cu stress time- and dose-dependently. Kinase activity assays demonstrated OsCORK1 as a Mn2+-preferred functional kinase. Genetically, OsCORK1 gene-edited mutants exhibited increased tolerance to Cu stress and reduced Cu accumulation compared to the wild type (WT). Conversely, OsCORK1 overexpression compromised the Cu stress tolerance observed in OsCORK1 gene-edited mutants. OsCORK1 gene-edited mutants slightly damaged the root tips compared to the WT under Cu stress. Furthermore, OsCORK1 was demonstrated to modulate Cu stress tolerance by mainly altering cell wall components, particularly lignin, in rice. Overall, OsCORK1 is an important negative regulator of Cu stress tolerance, providing a potential gene target to reduce Cu pollution in rice production.


Asunto(s)
Cobre , Oryza , Humanos , Cobre/toxicidad , Cobre/metabolismo , Oryza/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
J Hazard Mater ; 449: 130947, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801712

RESUMEN

Mercury (Hg) is a heavy metal (HM) that affects crop growth and productivity. In a previous study, we found that application of exogenous abscisic acid (ABA) alleviated growth inhibition in Hg-stressed wheat seedlings. However, the physiological and molecular mechanisms underlying ABA-mediated Hg detoxification remained unclear. In this study, Hg exposure reduced the plant fresh and dry weights and root numbers. Exogenous ABA treatment significantly resumed the plant growth, increased the plant height and weight, and enriched the roots numbers and biomass. The application of ABA enhanced Hg absorption and raised the Hg levels in the roots. In addition, exogenous ABA decreased Hg-induced oxidative damage and significantly brought down the activities of antioxidant enzymes, such as SOD, POD and CAT. Global gene expression patterns in the roots and leaves exposed to HgCl2 and ABA treatments were examined via RNA-Seq. The data showed that genes related to ABA-mediated Hg detoxification were enriched in functions related to cell wall formation. Weighted gene co-expression network analysis (WGCNA) further indicated that the genes implicated in Hg detoxification were related to cell wall synthesis. Under Hg stress, ABA significantly induced expression of the genes encoding cell wall synthesis enzymes, regulated the activity of hydrolase, and increased the concentrations of cellulose and hemicellulose, hence promoting cell wall synthesis. Taken together, these results suggest that exogenous ABA could alleviate Hg toxicity in wheat by promoting cell wall formation and suppressing translocation of Hg from roots to shoots.


Asunto(s)
Ácido Abscísico , Mercurio , Ácido Abscísico/farmacología , Triticum/metabolismo , Antioxidantes/metabolismo , Mercurio/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/metabolismo
5.
New Phytol ; 237(5): 1826-1842, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36440499

RESUMEN

Previous studies have reported that PID2, which encodes a B-lectin receptor-like kinase, is a key gene in the resistance of rice to Magnaporthe oryzae strain ZB15. However, the PID2-mediated downstream signalling events remain largely unknown. The U-box E3 ubiquitin ligase OsPIE3 (PID2-interacting E3) was isolated and confirmed to play key roles in PID2-mediated rice blast resistance. Yeast two-hybrid analysis showed that the armadillo repeat region of OsPIE3 is required for its interaction with PID2. Further investigation demonstrated that OsPIE3 can modify the subcellular localisation of PID2, thus promoting its nuclear recruitment from the plasma membrane for protein degradation in the ubiquitin-proteasome system. Site-directed mutagenesis of a conserved cysteine site (C230S) within the U-box domain of OsPIE3 reduces PID2 translocation and ubiquitination. Genetic analysis suggested that OsPIE3 loss-of-function mutants exhibited enhanced resistance to M. oryzae isolate ZB15, whereas mutants with overexpressed OsPIE3 exhibited reduced resistance. Furthermore, the OsPIE3/PID2-double mutant displayed a similar blast phenotype to that of the PID2 single mutant, suggesting that OsPIE3 is a negative regulator and functions along with PID2 in blast disease resistance. Our findings confirm that the E3 ubiquitin ligase OsPIE3 is necessary for PID2-mediated rice blast disease resistance regulation.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Resistencia a la Enfermedad/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Lectinas/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinación , Oryza/metabolismo , Enfermedades de las Plantas
6.
Environ Sci Pollut Res Int ; 30(2): 5161-5177, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35976592

RESUMEN

Reducing exhaust emissions, promoting economic development, and realizing clean energy utilization have always been concerns in China. To measure the relationship between them, this study selects the data related to energy consumption, economic growth, and exhaust emissions from 2000 to 2019 in 30 Chinese provinces. By constructing a panel vector autoregressive (PVAR) model, the dynamic relationship between them in China is quantitatively analyzed. The results show that there is a long-term interaction between energy consumption, economic growth, and exhaust emissions. Among them, economic growth is highly dependent on energy consumption, but it can promote the reduction of exhaust emissions. However, energy consumption will produce a large amount of industrial waste, such as sulfur dioxide and carbon dioxide emissions. Specifically, the industrial structure and energy structure have the most obvious impact on reducing industrial sulfur dioxide emissions and carbon emissions, with the proportion between 0.071-0.090 and 0.031-0.032, respectively. Therefore, the adjustment of industrial structure and energy structure is the key to exhaust emission reduction.


Asunto(s)
Desarrollo Económico , Dióxido de Azufre , Industrias , China , Dióxido de Carbono/análisis
7.
ACS Nano ; 16(11): 18376-18389, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36355037

RESUMEN

Currently, one of the main reasons for the ineffectiveness of tumor treatment is that the abnormally high tumor interstitial pressure (TIP) hinders the delivery of drugs to the tumor center and promotes intratumoral cell survival and metastasis. Herein, we designed a "nanomotor" by in situ growth of Ag2S nanoparticles on the surface of ultrathin WS2 to fabricate Z-scheme photocatalytic drug AWS@M, which could rapidly enter tumors by splitting water in interstitial liquid to reduce TIP, along with O2 generation. Moreover, the O2 would be further converted to reactive oxygen species (ROS), accompanied by increased local temperature of tumors, and the combination of ROS with thermotherapy could eliminate the deep tumor cells. Therefore, the "nanomotor'' could effectively reduce the TIP levels of cervical cancer and pancreatic cancer (degradation rates of 40.2% and 36.1%, respectively) under 660 nm laser irradiation, further enhance intratumor drug delivery, and inhibit tumor growth (inhibition ratio 95.83% and 87.61%, respectively), and the related mechanism in vivo was explored. This work achieves efficiently photocatalytic water-splitting in tumor interstitial fluid to reduce TIP by the nanomotor, which addresses the bottleneck problem of blocking of intratumor drug delivery, and provides a general strategy for effectively inhibiting tumor growth.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Agua , Línea Celular Tumoral
8.
Plant Sci ; 324: 111416, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995109

RESUMEN

The source and sink balance determines crop growth, which is largely modulated by nitrogen (N) supplies. The use of mixed ammonium and nitrate as N supply can improve plant growth, however mechanisms involving the coordination of carbon and N metabolism are not well understood. Here, we investigated potato plants responding to N forms and confirmed that, compared with sole nitrate supply, mixed N (75 %/25 % nitrate/ammonium) enhanced leaf area, photosynthetic activity and N metabolism and accordingly resulted in outgrowth of stolons and shoot axillary buds. Cytokinin transportation in xylem sap and local cytokinin synthesis in leaves were up-regulated in mixed-N-treated potato plants relative to sole nitrate provision; and exogenous application of 6-benzylaminopurine in addition to sole nitrate restored leaf area, photosynthetic capacity and N content in leaves to the similar as those under mixed-N treatment. Partial defoliation, an effective method to enhance the sink strength, induced more cytokinin content in leaflets under two treatments relative to their respective controls and ultimately resulted in larger photosynthesis capacity and leaf area. These results suggest that mixed-N-enhanced plant growth through the coordination of carbon and N metabolism largely depends on the signal molecule cytokinin modulated by N supplies.


Asunto(s)
Compuestos de Amonio , Solanum tuberosum , Compuestos de Amonio/metabolismo , Carbono/metabolismo , Citocininas/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas/metabolismo , Solanum tuberosum/metabolismo
9.
J Ovarian Res ; 15(1): 66, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650643

RESUMEN

Rising evidences bespeak that circular RNAs are indispensable in regulating cellular biological behaviors and engaging in diseases' occurrence. CircRHOBTB3 has been reported to participate intimately in the progression of some cancers. Nevertheless, the mechanism by which circRHOBTB3 regulates tumorigenesis in epithelial ovarian cancer (EOC) remains ill-defined. The present study determined the expression pattern and bio-effects of circRHOBTB3 in EOC. Furthermore, it revealed that circRHOBTB3 could serve as the ceRNA of miR­23a-3p to facilitate PTEN expression, suppress proliferation, G1/S transition, invasion, and promote apoptosis in EOC. Summarily, our findings provided a primary research foundation that circRHOBTB3 might be typified as a neoteric biomarker and a promising target of EOC, which is essential for improving the early diagnosis and precision treatment, so as to cut down EOC's mortality finally.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Circular , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Humanos , MicroARNs/genética , Neoplasias Ováricas/genética , ARN Circular/genética
10.
Biomed Res Int ; 2022: 7356992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496047

RESUMEN

Ovarian cancer (OC) is a malignancy with poor prognosis, stubborn resistance, and frequent recurrence. Recently, it has been widely recognized that immune-related genes (IRGs) have demonstrated their indispensable importance in the occurrence and progression of OC. Given this, this study aimed to identify IRGs with predictive value and build a prognostic model for a more accurate assessment. First, we obtained transcriptome and clinical information of ovarian samples from both TCGA and GTEx databases. After integration, we figured out 10 genes as immune-related prognostic genes (IRPGs) by performing the univariate Cox regression analysis. Subsequently, we established a TF-associated network to investigate its internal mechanism. The prognosis model consisting of 5 IRPGs was constructed later by lasso regression analysis. The comparison of the score with the clinical factors validated its independence and superiority in OC's prognosis. Moreover, the association between the signature and immune cell infiltration demonstrated its ability to image the immune situation of the tumor microenvironment. Finally, the reliability of the risk model was confirmed by the GEO cohort. Together, our study has constructed an independent prognostic model for OC, which may deepen the understanding of the immune microenvironment and help present novel biomarkers or ideas for targeted therapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Ováricas , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Pronóstico , Reproducibilidad de los Resultados , Microambiente Tumoral/genética
11.
Anim Genet ; 53(3): 422-426, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35292995

RESUMEN

As a member of the fatty acid desaturase family, fatty acid desaturase 2 (FADS2) gene is a rate-limiting enzyme in the synthesis of unsaturated fatty acids and within/near to the reported QTL regions for milk-production traits. We previously found that FADS2 is differentially expressed during different lactations of Chinese Holstein cows, and participates in lipid metabolic processes by influencing the insulin, PI3K-Akt, MAPK, AMPK, mTOR and PPAR signaling pathways. Therefore, we considered this gene as a candidate gene for milk-production traits. In this study, we identified 12 SNPs in FADS2 by re-sequencing, including two SNPs in the 5' flanking region, one in the seventh exon, five in introns, two in the 3' untranslated region and two in the 3' flanking region. The 29:g.40378819C>T is a missense mutation that causes alanine (GCG) to be replaced with valine (GTG). Through single marker association analysis, we found that all of the 12 SNPs were significantly associated with 305 day milk yield, fat yield, fat percentage, protein yield or protein percentage (p < 0.0493). The results of the subsequent haplotype association analysis also confirmed the associations between the gene and milk-production traits. In summary, this study suggests that there is a significant genetic association between FADS2 and milk-production traits, and that the SNPs with significant genetic effects can provide important molecular information for the development of a genomic selection chip in dairy cattle.


Asunto(s)
Leche , Fosfatidilinositol 3-Quinasas , Regiones no Traducidas 3' , Animales , Bovinos/genética , China , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Femenino , Lactancia/genética , Leche/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Polimorfismo de Nucleótido Simple
12.
BMC Genom Data ; 22(1): 47, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732138

RESUMEN

BACKGROUND: Our preliminary work confirmed that, SLC22A7 (solute carrier family 22 member 7), NGFR (nerve growth factor receptor), ARNTL (aryl hydrocarbon receptor nuclear translocator like) and PPP2R2B (protein phosphatase 2 regulatory subunit Bß) genes were differentially expressed in dairy cows during different stages of lactation, and involved in the lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, so we considered these four genes as the candidates affecting milk production traits. In this study, we detected polymorphisms of the four genes and verified their genetic effects on milk yield and composition traits in a Chinese Holstein cow population. RESULTS: By resequencing the whole coding region and part of the flanking region of SLC22A7, NGFR, ARNTL and PPP2R2B, we totally found 20 SNPs, of which five were located in SLC22A7, eight in NGFR, three in ARNTL, and four in PPP2R2B. Using Haploview4.2, we found three haplotype blocks including five SNPs in SLC22A7, eight in NGFR and three in ARNTL. Single-SNP association analysis showed that 19 out of 20 SNPs were significantly associated with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage in the first and second lactations (P < 0.05). Haplotype-based association analysis showed that the three haplotypes were significantly associated with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage (P < 0.05). Further, we used SOPMA software to predict a SNP, 19:g.37095131C > T in NGFR, changed the structure of NGFR protein. In addition, we used Jaspar software to found that four SNPs, 19:g.37113872C > G,19:g.37113157C > T, and 19:g.37112276C > T in NGFR and 15:g.39320936A > G in ARNTL, could change the transcription factor binding sites and might affect the expression of the corresponding genes. These five SNPs might be the potential functional mutations for milk production traits in dairy cattle. CONCLUSIONS: In summary, we proved that SLC22A7, NGFR, ARNTL and PPP2R2B have significant genetic effects on milk production traits. The valuable SNPs can be used as candidate genetic markers for genomic selection of dairy cattle, and the effects of these SNPs on other traits need to be further verified.


Asunto(s)
Factores de Transcripción ARNTL/genética , Bovinos/genética , Leche/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Proteína Fosfatasa 2/genética , Receptores de Factor de Crecimiento Nervioso/genética , Animales , China , Femenino
13.
Cancer Cell Int ; 21(1): 256, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975598

RESUMEN

Competing endogenous RNAs (ceRNAs) can indirectly regulate gene expression by competitively binding to microRNA(miRNA) through miRNA response elements (MREs) to affect miRNA-induced gene regulation, which is of great biological significance. Among them, circular RNA (circRNA) has become a hotspot due to its highest binding capacity. A specific circRNA discussed in this review, circHIPK3, has been studied for its biological characteristics, function, cellular effects and its relationship with tumors and various diseases. Here, we review the recent researches about circHIPK3 in detail and aim to elucidate accurate conclusions from them. These circHIPK3-miRNAs-mRNA pathways will further advance the application of circHIPK3 in diseases development, early diagnosis and gene targeting therapy.

14.
J Mater Chem B ; 9(9): 2323-2333, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33621309

RESUMEN

Tumor-associated immunosuppression, as a key barrier, prevents immunotherapy-resistant tumors. In this study, an ingenious "nanoconverter" was designed to convert immunosuppression into immunoactivation, which was a C6-ceramide (C6)-modified tumor cytomembrane-coated polydopamine-paclitaxel system (PTX/PDA@M-C6). The co-administration of C6-ceramide and tumor cytomembrane changed an adaptive immune state to an activation state, which induced a robust antigen presentation ability of tumor-infiltrating dendritic cells to activate T1 helper cells and cytotoxic T lymphocytes. Meanwhile, C6-ceramide regulated the phenotype of macrophages via the reactive oxygen species pathway, which resulted in the conversion of M2-like macrophages by infiltration within tumors into M2-like macrophages, and therefore, M2-like macrophage-mediated immunosuppression was weakened distinctly. The "nanoconverter"-mediated conversion process upregulated the expression of related immune factors including interleukin-12, interleukin-6, tumor necrosis factor-α and interferon-γ and executed positive anti-tumor effects. In addition, under the protection of tumor-homologous cytomembrane, the "nanoconverter" exhibited excellent delivery efficiency (23.22%), and subsequently, accumulated special structural "nanoconverter" could break down into smaller nanoparticles for deep penetration into the tumor tissue under a NIR laser. Ultimately, chemo/thermal therapy-assisted immunotherapy completely eliminated the tumors of tumor-bearing mice, and a potent memory response relying on effector memory T cells still persisted to protect against tumor relapse after the end of treatment. The "nanoconverter" serves as a promising nanodrug delivery system for the conversion of immunosuppression and enhanced chemo/thermal therapy. Therefore, the highly cumulative "nanoconverter" has great potential for promoting the effect and clinical application of immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Nanoestructuras/química , Animales , Transformación Celular Neoplásica , Ceramidas/química , Humanos , Indoles/química , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/farmacología , Fenotipo , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Mater Chem B ; 8(23): 5155-5166, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32426786

RESUMEN

Gold nanomaterials (GNMs) are used in photothermal therapy due to their superior optical properties and excellent biocompatibility. However, the complex preparation process involving seed-mediated growth limits further clinical applications of GNMs. Herein, a novel one-pot approach to rapidly prepare liposome-based branched gold nanoshells (BGNS) as an antitumor drug nanocarrier is reported. This efficient seedless synthesis realized tunable absorption peaks of BGNS through controlling the concentration of the Au precursor solution, obtaining high absorbance in the near-infrared (NIR) window to achieve a superior photothermal effect. Hyperthermia during NIR laser irradiation can ablate the tumor and trigger drug release to achieve combined treatment. After laser irradiation, the nanocarriers disintegrated into individual gold nanoparticles (size: about 8 nm), which can be metabolized by the kidneys. Cell experiments in vitro and experiments involving mice with tumors have confirmed that the nanodrugs have strong antitumor effects. Such a flexible method provides a universal approach for rapidly preparing liposome-based gold nanoshells, which have the potential for large-scale preparation for further clinical applications.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Oro/química , Nanopartículas del Metal/química , Terapia Fototérmica , Animales , Antibióticos Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HeLa , Humanos , Rayos Láser , Liposomas/química , Ratones , Ratones Endogámicos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Propiedades de Superficie
16.
Biol Res ; 52(1): 56, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699158

RESUMEN

BACKGROUND: ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. METHODS: In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. RESULTS: Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. CONCLUSIONS: As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.


Asunto(s)
Pan , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Proteínas de Plantas/genética , Factores de Transcripción , Triticum/genética
17.
Biol. Res ; 52: 56-56, 2019. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1505776

RESUMEN

BACKGROUND: ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. METHODS: In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. RESULTS: Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. CONCLUSIONS: As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.


Asunto(s)
Proteínas de Plantas/metabolismo , Triticum/metabolismo , Pan , Genes de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción , Triticum/genética , Glucosa-1-Fosfato Adenililtransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...