Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5081, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426580

RESUMEN

Solution-processed metal halide perovskites have been recognized as one of the most promising semiconductors, with applications in light-emitting diodes (LEDs), solar cells and lasers. Various additives have been widely used in perovskite precursor solutions, aiming to improve the formed perovskite film quality through passivating defects and controlling the crystallinity. The additive's role of defect passivation has been intensively investigated, while a deep understanding of how additives influence the crystallization process of perovskites is lacking. Here, we reveal a general additive-assisted crystal formation pathway for FAPbI3 perovskite with vertical orientation, by tracking the chemical interaction in the precursor solution and crystallographic evolution during the film formation process. The resulting understanding motivates us to use a new additive with multi-functional groups, 2-(2-(2-Aminoethoxy)ethoxy)acetic acid, which can facilitate the orientated growth of perovskite and passivate defects, leading to perovskite layer with high crystallinity and low defect density and thereby record-high performance NIR perovskite LEDs (~800 nm emission peak, a peak external quantum efficiency of 22.2% with enhanced stability).

2.
J Phys Chem Lett ; 10(3): 453-459, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30638010

RESUMEN

Tin-based halide perovskites have attracted considerable attention for nontoxic perovskite light-emitting diodes (PeLEDs), but the easy oxidation of Sn2+ and nonuniform film morphology cause poor device stability and reproducibility. Herein, we report a facile approach to achieve efficient and stable lead-free PeLEDs by using tin-based perovskite multiple quantum wells (MQWs) for the first time. On the basis of various spectroscopic investigations, we find that the MQW structure not only facilitates the formation of uniform and highly emissive perovskite films but also suppresses the oxidation of Sn2+ cations. The tin-based MQW PeLED exhibits a peak external quantum efficiency of 3% and a high radiance of 40 W sr-1 m-2 with good reproducibility. Significantly, these devices show excellent operational stability with over a 2 h lifetime under a constant current density of 10 mA cm-2, which is comparable to that of lead-based PeLEDs. These results suggest that perovskite MQWs can provide a promising platform for achieving high-performance lead-free PeLEDs.

3.
Nature ; 562(7726): 249-253, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305742

RESUMEN

Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society-for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1-3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6-9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved-values that approach those of the best-performing organic LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...