Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(1): 751-760, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580372

RESUMEN

Lithium garnet Li7La3Zr2O12 (LLZO), with high ionic conductivity and chemical stability against a Li metal anode, is considered one of the most promising solid electrolytes for lithium-sulfur batteries. However, an infinite charge time resulting in low capacity has been observed in Li-S cells using Ta-doped LLZO (Ta-LLZO) as a solid electrolyte. It was observed that this cell failure is correlated with lanthanum segregation to the surface of Ta-LLZO that reacts with a sulfur cathode. We demonstrated this correlation by using lanthanum excess and lanthanum deficient Ta-LLZO as the solid electrolyte in Li-S cells. To resolve this challenge, we physically separated the sulfur cathode and LLZO using a poly(ethylene oxide) (PEO)-based buffer interlayer. With a thin bilayer of LLZO and the stabilized sulfur cathode/LLZO interface, the hybridized Li-S batteries achieved a high initial discharge capacity of 1307 mA h/g corresponding to an energy density of 639 W h/L and 134 W h/kg under a high current density of 0.2 mA/cm2 at room temperature without any indication of a polysulfide shuttle. By simply reducing the LLZO dense layer thickness to 10 µm as we have demonstrated before, a significantly higher energy density of 1308 W h/L and 257 W h/kg is achievable. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the PEO-based interlayer, which physically separates the sulfur cathode and LLZO, is both chemically and electrochemically stable with LLZO. In addition, the PEO-based interlayer can adapt to the stress/strain associated with sulfur volume expansion during lithiation.

2.
ACS Appl Mater Interfaces ; 12(22): 24693-24700, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32374150

RESUMEN

Using the nanoindentation technique, we probed the mechanical properties of tape cast and sintered thin doped Li7La3Zr2O12 garnet electrolytes. For comparison, a bulk garnet sample fabricated by die pressing and sintering was also studied. The results indicate that the thin sample has a significantly higher elastic modulus (∼155 GPa), hardness (∼11 GPa), and indentation fracture toughness (∼1.12 ± 0.12 MPa·m1/2) than the bulk sample (∼142 GPa, ∼10 GPa, and ∼0.97 ± 0.10 MPa·m1/2, respectively). The above results demonstrate that the thin sample can more effectively prevent lithium dendrite penetration due to its better mechanical properties. Deformation and creep behavior analysis further indicates that the thin sample (1) has a higher resistance to withhold the charge/discharge stress and consequently deformation and (2) a lower creep exponent and likely high resistance to brittle failure.

3.
Angew Chem Int Ed Engl ; 56(47): 14942-14947, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28994191

RESUMEN

The interface between solid electrolytes and Li metal is a primary issue for solid-state batteries. Introducing a metal interlayer to conformally coat solid electrolytes can improve the interface wettability of Li metal and reduce the interfacial resistance, but the mechanism of the metal interlayer is unknown. In this work, we used magnesium (Mg) as a model to investigate the effect of a metal coating on the interfacial resistance of a solid electrolyte and Li metal anode. The Li-Mg alloy has low overpotential, leading to a lower interfacial resistance. Our motivation is to understand how the metal interlayer behaves at the interface to promote increased Li-metal wettability of the solid electrolyte surface and reduce interfacial resistance. Surprisingly, we found that the metal coating dissolved in the molten piece of Li and diffused into the bulk Li metal, leading to a small and stable interfacial resistance between the garnet solid electrolyte and the Li metal. We also found that the interfacial resistance did not change with increase in the thickness of the metal coating (5, 10, and 100 nm), due to the transient behavior of the metal interface layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA