Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(36)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161943

RESUMEN

A molecular crystalline SnI4undergoes pressure-induced solid-state amorphization via molecular dissociation to the high-density amorphous (HDA) state, which we call Am-I. In the present study, we examine the reverse transition process from Am-I to the low-density amorphous (LDA) state, called Am-II. We first measure the structure factor on decompression from 30 GPa down to 1.1 GPa at room temperature, usingin situangle-dispersive synchrotron x-ray measurement and a diamond anvil cell. We then estimate the density, which exhibits an abrupt change between 3.3 and 3.0 GPa, indicating the HDA(Am-I)-to-LDA(Am-II) transition. We use the density and the molecular configuration generated from a molecular dynamics simulation as input to a reverse Monte Carlo fit. The fit vividly visualizes gradual molecular reassociation between 18 and 14 GPa within the Am-I region. The Am-I state can thus be divided into two states: the high-pressure Am-I state containing isolated Sn atoms and the low-pressure Am-I state consisting of deformed molecules connected by metallic I2bonds. In the latter state, the molecular shape becomesC3v-like just before the transition to Am-II, in which molecules recover the originalTdsymmetry. This local symmetry change has been detected on the liquid-liquid transition of SnI4, suggesting the strong coupling between the local symmetry and the global order parameter of density.

2.
Rev Sci Instrum ; 92(2): 025117, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648118

RESUMEN

A unique way to assemble a set of second-stage anvils for a cubic multianvil apparatus when used in a 6-6 mode is proposed. A plastic frame supporting the second-stage anvils along with a newly designed tool allows us to assemble the second-stage anvils within a few minutes. The precision of anvil alignment is even better than the one attained by the ordinary method, which assembles the anvils within a metal frame in a quite time-consuming way. In situ experiments utilizing a synchrotron x-ray source proved a stable operation under 1500 K and about 10 GPa. The quick and accurate assembling feature of our device may ensure a minimum loss of beam time given in such a facility.

3.
J Phys Condens Matter ; 32(5): 055401, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31600736

RESUMEN

A SnI4 molecule lowers its symmetry from T d to [Formula: see text] on the liquid-liquid transition. Because it is possible to lower the molecular symmetry without violating the crystalline symmetry, it is worth examining whether the deformation occurs in the crystalline phase field. Extended x-ray absorption fine structure (EXAFS) measurements on the crystalline state were carried out to investigate the change in the environment around a Sn atom at high pressures and temperatures. We could not find clear evidence on the symmetry change of molecules even close to the melting points, where the melting curve becomes abnormally flat against pressure. Indeed, no inconsistency was found when we assumed that the coordination number of a Sn atom remains unchanged in the temperature and pressure range examined. The situation remains true when the system entered the high-pressure crystalline phase on compression. We can propose a consistent scenario as to the structural change on the phase transformation. The incompressibility of a SnI4 molecule could be suitably quantified. The procedure enabled us to conclude the molecule is more than an order of magnitude incompressible than the lattice.

4.
J Phys Condens Matter ; 31(22): 225101, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836344

RESUMEN

SnI4 and GeI4 have been shown to exhibit similar polyamorphic nature. We examine the microscopic nature of the liquid-liquid transition in GeI4 by conducting an isothermal-isobaric molecular dynamics simulation for the system composed of rigid tetrahedral molecules. The model allows us to semiquantitatively discuss the structural properties of liquid GeI4 below 1 GPa. We define a physical bond between the nearest intermolecular iodine sites satisfying the conditions of forming the metallic I2 bond. We then focus on the formation of molecular clusters in dynamic networks of the bonds. The clusters are mainly formed by molecules whose nearest pairs are in edge-to-edge, face-to-edge, and vertex-to-edge orientations. The clusters grow as pressure increases, and the onset of percolation is observed below 1 GPa. The finite-size scaling analysis for the percolation probability identifies that the threshold pressure is [Formula: see text] GPa for the present model, which is near the extension of the boundary between the two liquid phases. We thus speculate that the liquid-liquid transition of GeI4 is attained by polymerization, i.e. percolation of molecular networks. The same percolation scenario with a slight modification such as introducing a bootstrap mechanism is expected to apply to the transition in liquid SnI4.

5.
J Chem Phys ; 150(11): 114501, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30902017

RESUMEN

SnI4 and GeI4 have been confirmed to have another liquid state appearing on compression. To identify the microscopic pathway from the low- to high-pressure liquid states, the structure of these liquids in the appropriate thermodynamic regions was analyzed using a reverse Monte Carlo method. The occurrence of pressure-induced symmetry lowering of molecules, from regular tetrahedral to ammonia-like pyramidal symmetry, was then recognizable in these systems. This symmetry lowering is reflected in the change in shape of the molecular form factor. The latter change occurs abruptly near the expected transition pressure in liquid SnI4, whereas it proceeds gradually in GeI4. This is consistent with our observation that SnI4 seems to undergo a first-order liquid-liquid transition, whereas the transition seems to end up with a crossover in liquid GeI4. Interestingly, when the molecular density becomes high, it is possible for the two-body intermolecular interaction to have a double-minimum character, which offers two characteristic length scales corresponding to two liquid states with different densities. However, quantum chemical calculations show that molecular deformation for this type of symmetry lowering results in an increase in electronic energy, which leaves the problem of the physical origin for this anisotropic deformation. We speculate that this symmetry lowering occurs as a precursor to the whole change in the liquid structure.

6.
J Phys Condens Matter ; 30(4): 045401, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29281612

RESUMEN

The similarity in the shape of the melting curve of GeI4 to that of SnI4 suggests that a liquid-liquid transition as observed in liquid SnI4 is also expected to occur in liquid GeI4. Because the slope of the melting curve of GeI4 abruptly changes at around 3 GPa, in situ synchrotron diffraction measurements were conducted to examine closely the structural changes upon compression at around 3 GPa. The reduced radial distribution functions of the high- and low-pressure liquid states of GeI4 share the same feature inherent in the high-pressure (high-density) and low-pressure (low-density) radial distribution functions of liquid SnI4. This feature allows us to introduce local order parameters that we may use to observe the transition. Unlike the transition in liquid SnI4, the transition from the low-pressure to the high-pressure structure seems sluggish. We speculate that the liquid-liquid critical point of GeI4 is no longer a thermodynamically stable state and is slightly located below the melting curve. As a result, the structural change is said to be a crossover rather than a transition. The behavior of the local-order parameters implies a metastable extension of the liquid-liquid phase boundary with a negative slope.

7.
J Chem Phys ; 146(19): 194503, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527460

RESUMEN

A pressure-induced structural change of a polymer isotactic poly(4-methyl-1-pentene) (P4MP1) in the melted state at 270 °C has been investigated by high-pressure in situ x-ray diffraction, where high pressures up to 1.8 kbar were applied using helium gas. The first sharp diffraction peak (FSDP) position of the melt shows a less pressure dependence than that of the normal compression using a solid pressure transmitting medium. The contraction using helium gas was about 10% at 2 kbar, smaller than about 20% at the same pressure using a solid medium. The result indicates that helium entered the interstitial space between the main chains. The helium/monomer molar ratio was estimated to be 0.3 at 2 kbar from the FSDP positions. These results suggest that the compressibility of the P4MP1 melt can be largely dependent on the pressure transmitting media. As the pore size is reversibly and continuously controllable by compression, we suggest that the P4MP1 melt can be an ideal porous liquid for investigating a novel mechanical response of the pores in a non-crystalline substance.

8.
J Phys Condens Matter ; 29(14): 145102, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28170355

RESUMEN

The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A 'bond' was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their 'bond' energy is too weak for the 'bond' and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

9.
J Phys Condens Matter ; 28(44): 445101, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27605016

RESUMEN

A molecular liquid GeI4 is a candidate that undergoes a pressure-induced liquid-to-liquid phase transition. This study establishes the reference structure of the low-pressure liquid phase. Synchrotron x-ray diffraction measurements were carried out at several temperatures between the melting and the boiling points under ambient pressure. The molecule has regular tetrahedral symmetry, and the intramolecular Ge-I length of 2.51 Å is almost temperature-independent within the measured range. A reverse Monte Carlo (RMC) analysis is employed to find that the distribution of molecular centers remains self-similar against heating, and thus justifying the length-scaling method adopted in determining the density. The RMC analysis also reveals that the vertex-to-face orientation of the nearest molecules are not straightly aligned, but are inclined at about 20 degrees, thereby making the closest intermolecular I-I distance definitely shorter than the intramolecular one. The prepeak observed at ∼1 Å(-1) in the structural factor slightly shifts and increases in height with increasing temperature. The origin of the prepeak is clearly identified to be traces of the 111 diffraction peak in the crystalline state. The prepeak, assuming the residual spatial correlation between germanium sites in the densest direction, thus shifts toward lower wavenumbers with thermal expansion. The aspect that a relative reduction in molecular size associated with the volume expansion is responsible for the increase in the prepeak's height is confirmed by a simulation, in which the molecular size is changed.

10.
J Chem Phys ; 139(24): 244503, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24387378

RESUMEN

The low-pressure crystalline phase of a molecular crystal, SnI4, has a rising melting curve that breaks abruptly at around 1.5 GPa, beyond which it becomes almost flat, with a slight maximum at about 3 GPa. Although the overall aspect of this melting curve can be captured by the Kumari-Dass-Kechin equation, the values for the parameters involved in the equation were definitely different from those predicted on the basis of the Clapeyron-Clausius relationship. On the other hand, the accuracy of our experimental data prevented us from judging whether the parameters are derivable from the Lindemann melting law, as shown independently by Kumari and Dass, and by Kechin. The Kraut-Kennedy and Magalinskii-Zubov relationships seem to be valid in the low-pressure region where the melting curve is rising. The breakdown of these relationships suggests a qualitative change in the intermolecular interaction upon compression, thereby making the melting behavior unusual.

11.
J Chem Phys ; 137(17): 174502, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23145734

RESUMEN

An investigation of the precise determination of melting temperature in the modified Lennard-Jones system under pressure-free conditions [Y. Asano and K. Fuchizaki, J. Phys. Soc. Jpn. 78, 055002 (2009)] was extended under finite-pressure conditions to obtain the phase diagram. The temperature and pressure of the triple point were estimated to be 0.61 ε∕k(B) and 0.0018(5) ε∕σ(3), and those of the critical point were 1.0709(19) ε∕k(B) and 0.1228(20) ε∕σ(3), where ε and σ are the Lennard-Jones parameters for energy and length scales, respectively, and k(B) is the Boltzmann constant. The potential used here has a finite attractive tail and does not suffer from cutoff problems. The potential can thus be a useful standard in examining statistical-mechanical problems in which different treatments for the tail would lead to different conclusions. The present phase diagram will then be a useful guide not only for equilibrium calculations but also for nonequilibrium problems such as discussions of the limits of phase (in)stability.

12.
J Chem Phys ; 135(9): 091101, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21913745

RESUMEN

We have shown from in situ synchrotron x-ray diffraction measurements that there are two thermodynamically stable liquid forms of SnI(4), depending on the pressure. Based on the liquid-liquid critical point scenario, our recent measurements suggest that the second critical point, if it exists, may be located in a region close to the point at which the melting curve of the crystalline phase abruptly breaks. This region is, unlike that of water, experimentally accessible with relative ease.

13.
J Chem Phys ; 130(12): 121101, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334799

RESUMEN

The discovery of a first-order phase transition in fluid phosphorus aroused renewed interest in polyamorphism in liquids with a locally tetrahedral molecular structure. We have performed in situ synchrotron x-ray diffraction measurements on tin tetraiodide, which consists of SnI(4) tetrahedral molecules at ambient pressure, and established that the liquid forms existing above and below 1.5 GPa, where the slope of the melting curve of the solid phase changes abruptly, have different structures. This discovery offers evidence of thermodynamically stable polyamorphism in general compounds as well as in elements. A possible phase diagram that includes the two amorphous states already found is proposed based on the pseudobinary regular solution model. The vertex-to-face orientation between the nearest molecules plays a key role in the transition from the low-pressure to the high-pressure liquid phase.

14.
J Chem Phys ; 127(6): 064504, 2007 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-17705609

RESUMEN

Synchrotron x-ray diffraction measurements were performed on liquid SnI4 up to a scattering vector of 25 A(-1), utilizing a horizontal two-axis diffractometer installed at the SPring-8 bending magnet beam line BL04B2 in Japan. An effective method based on the maximum entropy method was devised to transform the measured total structure factor to the reduced radial distribution function. The reliability of the density estimation is discussed.

15.
J Chem Phys ; 120(23): 11196-9, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15268149

RESUMEN

The location of the liquidus in the low-pressure crystalline phase of SnI(4) was determined utilizing in situ x-ray diffraction measurements under pressures up to approximately 3.5 GPa. The liquidus is not well fitted to a monotonically increasing curve such as Simon's equation, but breaks near 1.5 GPa and then becomes almost flat. The results are compared to those from molecular dynamics simulations. Ways to improve the model potential adopted in the simulations are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA