Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 551: 333-344, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838980

RESUMEN

Brain function emerges from a highly complex network of specialized cells that are interlinked by billions of synapses. The synaptic connectivity between neurons is established between the elongated processes of their axons and dendrites or, together, neurites. To establish these connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns covering extensive distances and connecting with thousands of other neurons. The outgrowth and branching of neurites are tightly controlled during development and are a commonly used functional readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy images, however, is very time intensive and prone to bias. Most automated analyses of neurons rely on reconstruction of the neuron as a whole without a semantic analysis of each neurite. A fully-automated classification of all neurites still remains unavailable in open-source software. Here we present a standalone, GUI-based software for batch-quantification of neuronal morphology in two-dimensional fluorescence micrographs of cultured neurons with minimal requirements for user interaction. Single neurons are first reconstructed into binarized images using a Hessian-based segmentation algorithm to detect thin neurite structures combined with intensity- and shape-based reconstruction of the cell body. Neurites are then classified into axon, dendrites and their branches of increasing order using a geodesic distance transform of the cell skeleton. The software was benchmarked against a published dataset and reproduced the phenotype observed after manual annotation. Our tool promises accelerated and improved morphometric studies of neuronal morphology by allowing for consistent and automated analysis of large datasets.

2.
Curr Biol ; 33(13): R727-R729, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37433276

RESUMEN

Recent electron microscopy-based connectomes of the Caenorhabditis elegans nervous system provide a new opportunity to test classic models for the development of brain wiring. Statistical analyses now reveal that neuronal adjacencies (the contactome) can partly predict synaptic connectivity (the connectome).


Asunto(s)
Conectoma , Amor , Animales , Encéfalo , Caenorhabditis elegans , Proyectos de Investigación
3.
Front Mol Neurosci ; 15: 984655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187351

RESUMEN

Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.

4.
J Cell Sci ; 134(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766183

RESUMEN

Branches are critical for neuron function, generating the morphological complexity required for functional networks. They emerge from different, well-described, cytoskeletal precursor structures that elongate to branches. While branches are thought to be maintained by shared cytoskeletal regulators, our data from mouse hippocampal neurons indicate that the precursor structures trigger alternative branch maintenance mechanisms with differing stabilities. Whereas branches originating from lamellipodia or growth cone splitting events collapse soon after formation, branches emerging from filopodia persist. Furthermore, compared to other developing neurites, axons stabilise all branches and preferentially initiate branches from filopodia. These differences explain the altered stability of branches we observe in neurons lacking the plasma membrane protein phospholipid phosphatase-related protein 3 (PLPPR3, also known as PRG2) and in neurons treated with netrin-1. Rather than altering branch stability directly, PLPPR3 and netrin-1 boost a 'filopodia branch programme' on axons, thereby indirectly initiating more long-lived branches. In summary, we propose that studies on branching should distinguish overall stabilising effects from effects on precursor types, ideally using multifactorial statistical models, as exemplified in this study.


Asunto(s)
Conos de Crecimiento , Neuronas , Animales , Axones , Células Cultivadas , Ratones , Neuritas
5.
Neurosci Insights ; 15: 2633105520959056, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974612

RESUMEN

PTEN is a powerful regulator of neuronal growth. It globally suppresses axon extension and branching during both nervous system development and regeneration, by antagonizing growth-promoting PI3K/PI(3,4,5)P3 signaling. We recently identified that the transmembrane protein PRG2/LPPR3 functions as a modulator of PTEN function during axon morphogenesis. Our work demonstrates that through inhibition of PTEN activity, PRG2 stabilizes membrane PI(3,4,5)P3. In turn, PRG2 deficiency attenuates the formation of branches in a PTEN-dependent manner, albeit without affecting the overall growth capacity of extending axons. Thus, PRG2 is poised to temporally and locally relieve growth suppression mediated by PTEN in neurons and, in effect, to redirect growth specifically to axonal branches. In this commentary, we discuss potential implications and unresolved questions regarding the regulation of axonal PTEN in neurons. Given their widespread implication during neuronal development and regeneration, identification of mechanisms that confer spatiotemporal control of PTEN may unveil new approaches to reprogram PI3K signaling in neurodevelopmental disorders and regeneration research.

6.
EMBO Mol Med ; 12(8): e11674, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32558386

RESUMEN

Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.


Asunto(s)
Axones , Fosfatidilinositol 3-Quinasas , Adulto , Animales , Sistema Nervioso Central , Humanos , Ratones , Regeneración Nerviosa , Neuronas , Ratas
7.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722215

RESUMEN

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Asunto(s)
Axones/metabolismo , Proteínas de la Membrana/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Células COS , Chlorocebus aethiops , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo
8.
J Interpers Violence ; 19(5): 589-602, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15104863

RESUMEN

This study examined the sexual victimization of 309 female students in Germany. The results indicate that the majority of the subjects have been victims of minor offenses and that a minority of subjects was severely victimized. As to the relation of victim and perpetrator, the milder offenses are more likely to be committed by strangers. In contrast, the most serious offenses are more likely to be committed by perpetrators with a close relation to the victim. It was also investigated whether the perception of being victimized correlates with the subjects' gender-role orientation and their health problems.


Asunto(s)
Mujeres Maltratadas/psicología , Víctimas de Crimen/psicología , Relaciones Interpersonales , Delitos Sexuales/psicología , Salud de la Mujer , Adulto , Agresión/psicología , Mujeres Maltratadas/estadística & datos numéricos , Niño , Maltrato a los Niños/psicología , Víctimas de Crimen/estadística & datos numéricos , Femenino , Alemania/epidemiología , Humanos , Modelos Logísticos , Violación/psicología , Factores de Riesgo , Factores Sexuales , Delitos Sexuales/estadística & datos numéricos , Estudiantes/psicología , Encuestas y Cuestionarios
9.
Chemosphere ; 46(9-10): 1303-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12002455

RESUMEN

Flue gas samples from eight different sources (industrial plants and crematories) have been analyzed for PCDD/Fs and PCBs and total Toxicity EQuivalents (TEQ) values have been calculated using the latest WHO toxicity equivalent factors from 1998. A contribution of PCBs to the Total TEQ up to 16% was found, within the 12 WHO-PCBs PCB-126 contributes mostly to the TEQ. Thermodynamic stability of PCBs was calculated semiempirically using the MOPAC program package and differences in the heat of formation (HoF) were compared to the distribution of PCBs in real samples. Partial correspondence between fact and theory could be found.


Asunto(s)
Benzofuranos/análisis , Contaminantes Ambientales/análisis , Residuos Industriales/análisis , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/análisis , Contaminantes del Suelo/análisis , Dibenzofuranos Policlorados , Monitoreo del Ambiente , Prácticas Mortuorias
10.
Angew Chem Int Ed Engl ; 37(19): 2668-2671, 1998 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29711599

RESUMEN

The largest isopolyoxotunstate ion known to date, W24 O8424- (structure shown in the picture), isolated as the cesium salt, and a chainlike polyoxotungstate ion made up of planar W4 O16 units, isolated as the sodium salt, hide behind the simple empirical formulas of the title compounds.

11.
Inorg Chem ; 35(11): 3273-3279, 1996 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-11666528

RESUMEN

The previously unknown heteropolyoxometalates [gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCR)(2)(OH(2))(2)](5-) (R = H, CH(3)) have been prepared by the reaction of [gamma-SiO(4)W(10)O(32)](8-) with [Cr(OH(2))(6)](3+) in formate or acetate buffer solution. Isolation of these new Cr(III)-substituted polyoxometalates was accomplished both as Cs(+) salts and as the Bu(4)N(+) salt for the acetate-containing anion. The compounds were characterized by elemental analysis, UV/vis, IR, and ESR spectroscopy, and cyclic voltammetry. The single-crystal X-ray structural analysis of (Bu(4)N)(3)H(2)[gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCCH(3))(2)(OH(2))(2)].3H(2)O [P2(1)2(1)2(1); a = 17.608(12), b = 20.992(13), c = 24.464(11) Å; Z = 4; R = 0.057 for 6549 observed independent reflections] reveals that the two corner-linked CrO(6) octahedra are additionally bridged by two acetate groups, demonstrating the relationship to the well-studied oxo-centered trinuclear carboxylato complexes of Cr(III).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...