Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 257: 113904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061278

RESUMEN

Interfacial phenomena between active cathode materials and solid electrolytes play an important role in the function of solid-state batteries. (S)TEM imaging can give valuable insight into the atomic structure and composition at the various interfaces, yet the preparation of TEM specimen by FIB (focused ion beam) is challenging for loosely bound samples like composites, as they easily break apart during conventional preparation routines. We propose a novel preparation method that uses a frame made of deposition layers from the FIB's gas injection system to prevent the sample from breaking apart. This technique can of course be also applied to other loosely bound samples, not only those in the field of batteries.

2.
Nat Commun ; 14(1): 6946, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907471

RESUMEN

Lithium-metal batteries with a solid electrolyte separator are promising for advanced battery applications, however, most electrolytes show parasitic side reactions at the low potential of lithium metal. Therefore, it is essential to understand how much (and how fast) charge is consumed in these parasitic reactions. In this study, a new electrochemical method is presented for the characterization of electrolyte side reactions occurring on active metal electrode surfaces. The viability of this new method is demonstrated in a so-called anode-free stainless steel ∣ Li6PS5Cl ∣ Li cell. The method also holds promise for investigating dendritic lithium growth (and dead lithium formation), as well as for analyzing various electrolytes and current collectors. The experimental setup allows easy electrode removal for post-mortem analysis, and the SEI's heterogeneous/layered microstructure is revealed through complementary analytical techniques. We expect this method to become a valuable tool in the future for solid-state lithium metal batteries and potentially other cell chemistries.

3.
ACS Appl Mater Interfaces ; 15(40): 47260-47277, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751537

RESUMEN

Variants of garnet-type Li7La3Zr2O12 are being intensively studied as separator materials in solid-state battery research. The material-specific transport properties, such as bulk and grain boundary conductivity, are of prime interest and are mostly investigated by impedance spectroscopy. Data evaluation is usually based on the one-dimensional (1D) brick layer model, which assumes a homogeneous microstructure of identical grains. Real samples show microstructural inhomogeneities in grain size and porosity due to the complex behavior of grain growth in garnets that is very sensitive to the sintering protocol. However, the true microstructure is often omitted in impedance data analysis, hindering the interlaboratory reproducibility and comparability of results reported in the literature. Here, we use a combinatorial approach of structural analysis and three-dimensional (3D) transport modeling to explore the effects of microstructure on the derived material-specific properties of garnet-type ceramics. For this purpose, Al-doped Li7La3Zr2O12 pellets with different microstructures are fabricated and electrochemically characterized. A machine learning-assisted image segmentation approach is used for statistical analysis and quantification of the microstructural changes during sintering. A detailed analysis of transport through statistically modeled twin microstructures demonstrates that the transport parameters derived from a 1D brick layer model approach show uncertainties up to 150%, only due to variations in grain size. These uncertainties can be even larger in the presence of porosity. This study helps to better understand the role of the microstructure of polycrystalline electroceramics and its influence on experimental results.

4.
Adv Sci (Weinh) ; 10(22): e2302521, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37221139

RESUMEN

Interfacial instability, viz., pore formation in the lithium metal anode (LMA) during discharge leading to high impedance, current focusing induced solid-electrolyte (SE) fracture during charging, and formation/behaviour of the solid-electrolyte interphase (SEI), at the anode, is one of the major hurdles in the development of solid-state batteries (SSBs). Also, understanding cell polarization behaviour at high current density is critical to achieving the goal of fast-charging battery and electric vehicle. Herein, via in situ electrochemical scanning electron microscopy (SEM) measurements, performed with freshly deposited lithium microelectrodes on transgranularly fractured fresh Li6PS5Cl (LPSCl), the LiǀLPSCl interface kinetics are investigated beyond the linear regime. Even at relatively small overvoltages of a few mV, the LiǀLPSCl interface shows non-linear kinetics. The interface kinetics possibly involve multiple rate-limiting processes, i.e., ion transport across the SEI and SE|SEI interfaces, as well as charge transfer across the LiǀSEI interface. The total polarization resistance RP of the microelectrode interface is determined to be ≈ 0.8 Ω cm2 . It is further shown that the nanocrystalline lithium microstructure can lead to a stable LiǀSE interface via Coble creep along with uniform stripping. Also, spatially resolved lithium deposition, i.e., at grain surface flaws, grain boundaries, and flaw-free surfaces, indicates exceptionally high mechanical endurance of flaw-free surfaces toward cathodic load (>150 mA cm-2 ). This highlights the prominent role of surface defects in dendrite growth.

5.
ACS Appl Mater Interfaces ; 15(23): 28692-28704, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37254535

RESUMEN

Lithium metal-based solid-state batteries (SSBs) have attracted much attention due to their potentially higher energy densities and improved safety compared with lithium-ion batteries. One of the most promising solid electrolytes, garnet-type Li7La3Zr2O12 (LLZO), has been investigated intensively in recent years. It enables the use of a lithium metal anode, but its application is still challenging because of lithium dendrites that grow at voids, cracks, and grain boundaries of sintered bodies during cycling of the battery cell. In this work, glass-ceramic Ta-doped LLZO produced in a unique melting process was investigated. Upon cooling, an amorphous phase is generated intrinsically, whose composition and fraction are adjusted during the process. Herein, it was set to about 4 wt % containing Li2O and a Li2O-SiO2 phase. During sintering, it was shown to segregate into the grain boundaries and decrease porosity via liquid phase sintering. Sintering temperature and sintering time were found to be reduced compared with the LLZO fabricated by a solid-state reaction while maintaining high density and ionic conductivity. The glass-ceramic sintered at 1130 °C for 0.5 h showed a room-temperature ionic conductivity of 0.64 mS cm-1. Most importantly, the evenly distributed amorphous phase along the grain boundaries effectively hinders lithium dendrite growth. Besides mechanically blocking pores and voids, it helps to prevent inhomogeneous distribution of current density. The critical current density (CCD) of the Li|LLZTO|Li symmetric cell was determined as 1.15 mA cm-2, and in situ lithium plating experiments in a scanning electron microscope revealed superior dendrite stability properties. Therefore, this work provides a promising strategy to prepare a dense and dendrite-suppressing solid electrolyte for future implementation in SSBs.

6.
Nat Commun ; 14(1): 1300, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894536

RESUMEN

The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the Li6.25Al0.25La3Zr2O12 garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.

7.
J Am Chem Soc ; 145(13): 7147-7158, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946557

RESUMEN

Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43- by WS42- in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm-1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.

8.
ACS Appl Mater Interfaces ; 14(37): 42757-42769, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36075055

RESUMEN

A non-ideal contact at the electrode/solid electrolyte interface of a solid-state battery arising due to pores (voids) or inclusions results in a geometric constriction effect that severely deteriorates the electric transport properties of the battery cell. The lack of understanding of this phenomenon hinders the optimization process of novel components, such as reversible and high-rate metal anodes. Deeper insight into the constriction phenomenon is necessary to correctly monitor interface degradation and to accelerate the successful use of metal anodes in solid-state batteries. Here, we use a 3D electric network model to study the fundamentals of the constriction effect. Our findings suggest that dynamic constriction as a non-local effect cannot be captured by conventional 1D equivalent circuit models and that its electric behavior is not ad hoc predictable. It strongly depends on the interplay of the geometry of the interface causing the constriction and the microscopic transport processes in the adjacent phases. In the presence of constriction, the contribution from the non-ideal electrode/solid electrolyte interface to the impedance spectrum may exhibit two signals that cannot be explained when the porous interface is described by a physical-based (effective medium theory) 1D equivalent circuit model. In consequence, the widespread assumption of a single interface contribution to the experimental impedance spectrum may be entirely misleading and can cause serious misinterpretation.

9.
J Am Chem Soc ; 140(47): 16330-16339, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30380843

RESUMEN

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest. Here, we systematically explore the influence of aliovalent substitution in Li6+ xP1- xGe xS5I using a combination of X-ray and neutron diffraction, as well as impedance spectroscopy and nuclear magnetic resonance. With increasing Ge content, an anion site disorder is induced and the activation barrier for ionic motion drops significantly, leading to the fastest lithium argyrodite so far with 5.4 ± 0.8 mS cm-1 in a cold-pressed state and 18.4 ± 2.7 mS cm-1 upon sintering. These high ionic conductivities allow for successful implementation within a thick-electrode solid-state battery that shows negligible capacity fade over 150 cycles. The observed changes in the activation barrier and changing site disorder provide an additional approach toward designing better performing solid electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...