Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Am J Pathol ; 194(5): 810-827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325553

RESUMEN

Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.


Asunto(s)
Lesiones de la Cornea , Síndromes de Ojo Seco , Canales de Potencial de Receptor Transitorio , Animales , Ratones , Córnea/patología , Lesiones de la Cornea/patología , Síndromes de Ojo Seco/metabolismo , Inflamación/patología , Dolor , Canales de Potencial de Receptor Transitorio/farmacología
3.
PLoS Pathog ; 19(12): e1011877, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127952

RESUMEN

Shiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1ß). STEC stimulated neutrophils to release elevated levels of IL-1ß through a mechanism that involved the activation of caspase-1 driven by the NLRP3-inflammasome and neutrophil serine proteases (NSPs). Noteworthy, IL-1ß secretion was higher at lower multiplicities of infection. This secretory profile modulated by the bacteria:neutrophil ratio, was the consequence of a regulatory mechanism that reduced IL-1ß secretion the higher were the levels of activation of both caspase-1 and NSPs, and the production of NADPH oxidase-dependent reactive oxygen species. Finally, we also found that inhibition of NSPs significantly reduced STEC-triggered IL-1ß secretion without modulating the ability of neutrophils to kill the bacteria, suggesting NSPs might represent pharmacological targets to be evaluated to limit the STEC-induced intestinal inflammation.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urémico , Interleucina-1beta , Escherichia coli Shiga-Toxigénica , Humanos , Caspasas , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/microbiología , Neutrófilos , Interleucina-1beta/metabolismo
4.
J Clin Med ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762747

RESUMEN

Patients with non-obstructive lipid-rich plaques (LRPs) on combined intravascular ultrasound (IVUS) and near-infrared spectroscopy (NIRS) are at high risk for future events. Local pre-emptive percutaneous treatment of LRPs with a paclitaxel-eluting drug-coated balloon (PE-DCB) may be a novel therapeutic strategy to prevent future adverse coronary events without leaving behind permanent coronary implants. In this pilot study, we aim to investigate the safety and feasibility of pre-emptive treatment with a PE-DCB of non-culprit non-obstructive LRPs by evaluating the change in maximum lipid core burden in a 4 mm segment (maxLCBImm4) after 9 months of follow up. Therefore, patients with non-ST-segment elevation acute coronary syndrome underwent 3-vessel IVUS-NIRS after treatment of the culprit lesion to identify additional non-obstructive non-culprit LRPs, which were subsequently treated with PE-DCB sized 1:1 to the lumen. We enrolled 45 patients of whom 20 patients (44%) with a non-culprit LRP were treated with PE-DCB. After 9 months, repeat coronary angiography with IVUS-NIRS will be performed. The primary endpoint at 9 months is the change in maxLCBImm4 in PE-DCB-treated LRPs. Secondary endpoints include clinical adverse events and IVUS-derived parameters such as plaque burden and luminal area. Clinical follow-up will continue until 1 year after enrollment. In conclusion, this first-in-human study will investigate the safety and feasibility of targeted pre-emptive PE-DCB treatment of LRPs to promote stabilization of vulnerable coronary plaque at risk for developing future adverse events.

5.
Neuroscience ; 529: 162-171, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598833

RESUMEN

In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. NeuN + immunostaining showed an early and almost complete absence of positive cells in cultures infected with GDVII, an approximately 50% reduction in cultures infected with DA, and fewer changes in L*-1 strains at 3 dpi. Accordingly, staining with chloromethyltetramethylrosamine orange (Mitotracker OrangeTM) as a parameter for cell viability showed similar results. Moreover, at 1 dpi, the strain DA induced higher transcript levels of neuroprotective genes such as IFN-Iß, IRF7, and IRF8. At 3 dpi, strains GDVII and DA, but not the L*-1 mutant, showed lower PKR expression. In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.


Asunto(s)
Theilovirus , Ratones , Animales , Theilovirus/fisiología , Neuronas , Columna Vertebral
6.
J Neuroinflammation ; 20(1): 120, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217914

RESUMEN

Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.


Asunto(s)
Células TH1 , Células Th2 , Ratones , Animales , Adyuvantes Inmunológicos , Córnea , Inmunidad Adaptativa , Inflamación
7.
Front Cell Infect Microbiol ; 13: 1252509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249298

RESUMEN

Clostridioides difficile is the main causative agent of hospital-acquired diarrhea and the potentially lethal disease, C. difficile infection. The cornerstone of the current therapy is the use of antibiotics, which is not fully effective. The molecular mechanisms, inflammatory conditions and host-immune responses that could benefit the persistence or elimination of C. difficile remain unclear. Macrophages perform different ways of endocytosis as part of their immune surveillance functions and platelets, classically known for their coagulatory role, are also important modulators of the immune system. The aim of this study was to evaluate the endocytosis of vegetative C. difficile by human macrophages and the involvement of platelets in this process. Our results showed that both macrophages and platelets interact with live and heat-killed C. difficile. Furthermore, platelets form complexes with human monocytes in healthy donor's fresh blood and the presence of C. difficile increased these cell-cell interactions. Using flow cytometry and confocal microscopy, we show that macrophages can internalize C. difficile and that platelets improve this uptake. By using inhibitors of different endocytic pathways, we demonstrate that macropinocytosis is the route of entry of C. difficile into the cell. Taken together, our findings are the first evidence for the internalization of vegetative non-toxigenic and hypervirulent C. difficile by human macrophages and highlight the role of platelets in innate immunity during C. difficile infection. Deciphering the crosstalk of C. difficile with immune cells could provide new tools for understanding the pathogenesis of C. difficile infection and for the development of host-directed therapies.


Asunto(s)
Clostridioides difficile , Humanos , Clostridioides , Plaquetas , Macrófagos , Pinocitosis
8.
Front Immunol ; 13: 832306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091026

RESUMEN

Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1ß) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1ß) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1ß is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1ß processing in these cells. We found that although caspase-1 is required for IL-1ß secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1ß processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1ß secretion.


Asunto(s)
Autofagia , Caspasa 1 , Interleucina-1beta , Neutrófilos , Serina Proteasas , Autofagia/genética , Autofagia/inmunología , Caspasa 1/genética , Caspasa 1/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Neutrófilos/enzimología , Neutrófilos/inmunología , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Serina Proteasas/genética , Serina Proteasas/inmunología
9.
Phys Rev Lett ; 128(20): 204502, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657876

RESUMEN

Verifying nonlinear stability of a laminar fluid flow against all perturbations is a central challenge in fluid dynamics. Past results rely on monotonic decrease of a perturbation energy or a similar quadratic generalized energy. None show stability for the many flows that seem to be stable despite these energies growing transiently. Here a broadly applicable method to verify global stability of such flows is presented. It uses polynomial optimization computations to construct nonquadratic Lyapunov functions that decrease monotonically. The method is used to verify global stability of 2D plane Couette flow at Reynolds numbers above the the energy stability threshold found by Orr in 1907 [The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid, Proc. R. Ir. Acad. Sect. A 27, 69 (1907)]. This is the first global stability result for any flow that surpasses the energy method.

10.
J Leukoc Biol ; 109(1): 257-273, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32991756

RESUMEN

Tuberculosis dates back to ancient times but it is not a problem of the past. Each year, millions of people die from tuberculosis. After inhalation of infectious droplet nuclei, Mycobacterium tuberculosis reaches the lungs where it can manipulate the immune system and survive within host macrophages, establishing a persistent infection. The signaling lymphocytic activation molecule family member 1 (SLAMF1) is a self-ligand receptor that can internalize gram-negative bacteria and regulate macrophages' phagosomal functions. In tuberculosis, SLAMF1 promotes Th1-protective responses. In this work, we studied the role of SLAMF1 on macrophages' functions during M. tuberculosis infection. Our results showed that both M. tuberculosis and IFN-γ stimulation induce SLAMF1 expression in macrophages from healthy donor and Tohoku Hospital Pediatrcs-1 cells. Costimulation through SLAMF1 with an agonistic antibody resulted in an enhanced internalization of M. tuberculosis by macrophages. Interestingly, we found that SLAMF1 interacts with M. tuberculosis and colocalizes with the bacteria and with early and late endosomes/lysosomes markers (EEA1 and LAMP2), suggesting that SLAMF1 recognize M. tuberculosis and participate in the endolysosomal maturation process. Notably, increased levels of SLAMF1 were detected in CD14 cells from pleural effusions of tuberculosis patients, indicating that SLAMF1 might have an active function at the site of infection. Taken together, our results provide evidence that SLAMF1 improves the uptake of M. tuberculosis by human monocyte-derived macrophages.


Asunto(s)
Macrófagos/inmunología , Fagocitosis/inmunología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Tuberculosis Pulmonar/inmunología , Adolescente , Adulto , Anciano , Endosomas/inmunología , Femenino , Humanos , Lisosomas/inmunología , Macrófagos/microbiología , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Transducción de Señal/inmunología , Adulto Joven
11.
Cell Rep ; 33(13): 108547, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378679

RESUMEN

Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state. We expose M1 macrophages to the acellular fraction of tuberculous pleural effusions (TB-PEs) and find lower glycolytic activity, accompanied by elevated levels of OXPHOS and bacillary load, compared to controls. The eicosanoid fraction of TB-PE drives these metabolic alterations. HIF-1α stabilization reverts the effect of TB-PE by restoring M1 metabolism. Furthermore, Mtb-infected mice with stabilized HIF-1α display lower bacillary loads and a pronounced M1-like metabolic profile in alveolar macrophages (AMs). Collectively, we demonstrate that lipids from a TB-associated microenvironment alter the M1 macrophage metabolic reprogramming by hampering HIF-1α functions, thereby impairing control of Mtb infection.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lípidos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis Pleural/metabolismo , Animales , Carga Bacteriana , Eicosanoides/farmacología , Femenino , Glucólisis/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Derrame Pleural , Tuberculosis Pleural/microbiología
12.
Clin Sci (Lond) ; 134(24): 3283-3301, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33346356

RESUMEN

Host adaptation of pathogens may increase intra- and interspecies transmission. We showed previously that the passage of a clinically isolated enterohemorrhagic Escherichia coli (EHEC) O157 strain (125/99) through the gastrointestinal tract of mice increases its pathogenicity in the same host. In this work, we aimed to elucidate the underlying mechanism(s) involved in the patho-adaptation of the stool-recovered (125RR) strain. We assessed the global transcription profile by microarray and found almost 100 differentially expressed genes in 125RR strain compared with 125/99 strain. We detected an overexpression of Type Three Secretion System (TTSS) proteins at the mRNA and protein levels and demonstrated increased adhesion to epithelial cell lines for the 125RR strain. Additional key attributes of the 125RR strain were: increased motility on semisolid agar, which correlated with an increased fliC mRNA level; reduced Stx2 production at the mRNA and protein levels; increased survival at pH 2.5, as determined by acid resistance assays. We tested whether the overexpression of the LEE-encoded regulator (ler) in trans in the 125/99 strain could recreate the increased pathogenicity observed in the 125RR strain. As anticipated ler overexpression led to increased expression of TTSS proteins and bacterial adhesion to epithelial cells in vitro but also increased mortality and intestinal colonization in vivo. We conclude that this host-adaptation process required changes in several mechanisms that improved EHEC O157 fitness in the new host. The research highlights some of the bacterial mechanisms required for horizontal transmission of these zoonotic pathogens between their animal and human populations.


Asunto(s)
Adaptación Fisiológica , Microambiente Celular , Escherichia coli O157/fisiología , Intestinos/microbiología , Animales , Sistemas de Secreción Bacterianos/genética , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Femenino , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Fenotipo , Virulencia
13.
PLoS Pathog ; 16(10): e1008929, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33002063

RESUMEN

The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the ß-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.


Asunto(s)
Células Espumosas/microbiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metabolismo de los Lípidos , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Animales , Gotas Lipídicas/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología
14.
Immunology ; 161(2): 148-161, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32702135

RESUMEN

Dry eye disease (DED) is a highly prevalent ocular surface disorder with neuroimmune pathophysiology. Tear hyperosmolarity (THO), a frequent finding in affected patients, is considered a key element in DED pathogenesis, yet existing animal models are based on subjecting the ocular surface to the more complex desiccating stress - decreased tear production and/or increased evaporation - instead of strict hyperosmolar stress. Here we characterized a murine model of THO that does not involve desiccating stress, thus allowing us to dissect the contribution of THO to DED. Our results showed that THO is sufficient to disrupt neuroimmune homeostasis of the ocular surface in mice, and thus reproduce many sub-clinical DED findings. THO activated nuclear factor-κB signalling in conjunctival epithelial cells and increased dendritic cell recruitment and maturation, leading to more activated (CD69+ ) and memory (CD62lo CD44hi) CD4+ T-cells in the eye-draining lymph nodes. Ultimately, THO impaired the development of ocular mucosal tolerance to a topical surrogate antigen in a chain of events that included epithelial nuclear factor-κB signalling and activation of transient receptor potential vanilloid 1 as the probable hypertonicity sensor. Also, THO reduced the density of corneal intraepithelial nerves and terminals, and sensitized the ocular surface to hypertonicity. Finally, the adoptive transfer of T-cells from THO mice to naïve recipients under mild desiccating stress favoured DED development, showing that THO is enough to trigger an actual pathogenic T-cell response. Our results altogether demonstrate that THO is a critical initiating factor in DED development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Síndromes de Ojo Seco/fisiopatología , Fenómenos Fisiológicos Oculares , Lágrimas/metabolismo , Traslado Adoptivo , Animales , Células Cultivadas , Ojo , Homeostasis , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neuroinmunomodulación , Concentración Osmolar , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Lágrimas/química
17.
Sci Rep ; 10(1): 3120, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080346

RESUMEN

Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.


Asunto(s)
Bacillus subtilis/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Transcitosis , Células CACO-2 , Polaridad Celular , Proliferación Celular , Supervivencia Celular , Epitelio/metabolismo , Alimentos Funcionales , Humanos , Intestinos , Microscopía Confocal , Modelos Biológicos , Probióticos
19.
Front Immunol ; 10: 2374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681277

RESUMEN

Fever is a hallmark of infections and inflammatory diseases, represented by an increase of 1-4°C in core body temperature. Fever-range hyperthermia (FRH) has been shown to increase neutrophil recruitment to local sites of infection. Here, we evaluated the impact of a short period (1 h) of FRH (STFRH) on pro-inflammatory and bactericidal human neutrophil functions. STFRH did not affect neutrophil spontaneous apoptosis but reverted the lipopolysaccharide (LPS)-induced anti-apoptotic effect compared with that under normothermic conditions. Furthermore, STFRH accelerated phorbol myristate acetate (PMA)-induced NETosis evaluated either by the nuclear DNA decondensation at 2 h post-stimulation or by the increase in extracellular DNA that colocalized with myeloperoxidase (MPO) at 4 h post-stimulation. Increased NETosis upon STFRH was associated with an increase in reactive oxygen species (ROS) production but not in autophagy levels. STFRH also increased NETosis in response to Pseudomonas aeruginosa challenge but moderately reduced its phagocytosis. However, these STFRH-induced effects did not influence the ability of neutrophils to kill bacteria after 4 h of co-culture. STFRH also significantly reduced neutrophil capacity to release the pro-inflammatory cytokines chemokine (C-X-C motif) ligand 8/interleukin 8 (CXCL8/IL-8) and IL-1ß in response to LPS and P. aeruginosa challenge. Altogether, these results indicate that a short and mild hyperthermal period is enough to modulate neutrophil responses to bacterial encounter. They also suggest that fever spikes during bacterial infections might lead neutrophils to trigger an emergency response promoting neutrophil extracellular trap (NET) formation to ensnare bacteria in order to wall off the infection and to reduce their release of pro-inflammatory cytokines in order to limit the inflammatory response.


Asunto(s)
Trampas Extracelulares/inmunología , Fiebre/inmunología , Interleucina-1beta/inmunología , Interleucina-8/inmunología , Neutrófilos/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Trampas Extracelulares/microbiología , Femenino , Fiebre/microbiología , Fiebre/patología , Humanos , Masculino , Neutrófilos/microbiología , Neutrófilos/patología , Infecciones por Pseudomonas/patología
20.
Kidney Int Rep ; 4(10): 1454-1462, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31701055

RESUMEN

INTRODUCTION: Sialic acids are important contributors to the polyanionic component of the glomerular filtration barrier, which regulates permeability selectivity. Pathologic glomerular hyposialylation, associated with podocyte effacement, has been implicated in human and mouse glomerulopathies. Oral treatment with N-acetylmannosamine (ManNAc), the uncharged precursor of sialic acid, ameliorates glomerular pathology in different models of glomerular disease. METHODS: Here we explore the sialylation status of kidney biopsies obtained from 27 subjects with various glomerular diseases using lectin histochemistry. RESULTS: We identified severe glomerular hyposialylation in 26% of the biopsies. These preliminary findings suggest that this condition may occur relatively frequently and may be a novel target for therapy. We describe the background, rationale, and design of a phase 1 study to test safety, tolerability, and pharmacokinetics of ManNAc in subjects with primary podocyte diseases. CONCLUSION: We recently demonstrated that ManNAc was safe and well tolerated in a first-in-human phase 1 study in subjects with UDP-N-acetylglucosamine (GlcNAc) 2-epimerase/ManNAc kinase (GNE) myopathy, a disorder of impaired sialic acid synthesis. Using previous preclinical and clinical data, we propose to test ManNAc therapy for subjects with primary glomerular diseases. Even though the exact mechanisms, affected cell types, and pathologic consequences of glomerular hyposialylation need further study, treatment with this physiological monosaccharide could potentially replace or supplement existing glomerular diseases therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...