Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445811

RESUMEN

Anxiety is a serious mental disorder, and recent statistics have determined that 35.12% of the global population had an anxiety disorder during the COVID-19 pandemic. A mechanism associated with anxiolytic effects is related to nicotinic acetylcholine receptor (nAChR) agonists, principally acting on the α4ß2 nAChR subtype. nAChRs are present in different animal models, including murine and teleosteos ones. Zebrafish has become an ideal animal model due to its high human genetic similarities (70%), giving it high versatility in different areas of study, among them in behavioral studies related to anxiety. The novel tank diving test (NTT) is one of the many paradigms used for studies on new drugs related to their anxiolytic effect. In this work, an adult zebrafish was used to determine the behavioral effects of 3- and 5-halocytisine derivatives, using the NTT at different doses. Our results show that substitution at position 3 by chlorine or bromine decreases the time spent by the fish at the bottom compared to the control. However, the 3-chloro derivative at higher doses increases the bottom dwelling time. In contrast, substitution at the 5 position increases bottom dwelling at all concentrations showing no anxiolytic effects in this model. Unexpected results were observed with the 5-chlorocytisine derivative, which at a concentration of 10 mg/L produced a significant decrease in bottom dwelling and showed high times of freezing. In conclusion, the 3-chloro and 3-bromo derivatives show an anxiolytic effect, the 3-chlorocytisine derivative being more potent than the 3-bromo derivative, with the lowest time at the bottom of the tank at 1mg/L. On the other hand, chlorine, and bromine at position 5 produce an opposite effect.


Asunto(s)
Ansiolíticos , COVID-19 , Buceo , Humanos , Animales , Ratones , Pez Cebra , Bromo , Cloro , Pandemias , Conducta Animal , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Agonistas Nicotínicos/farmacología
2.
Eur J Pharm Sci ; 119: 49-61, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29630938

RESUMEN

Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). GA loading efficiency as high as 77% was obtained under optimal process conditions. The coaxial nanofibers controlled GA release in acid and neutral pH medium. Cytotoxicity and reactive oxygen species (ROS) production on gallbladder cancer cell lines GB-d1 and NOZ in the presence of GA-nanofibers were assessed. GA-nanofibers triggered an increase in the cellular cytotoxicity compared with free GA on GB-d1 and NOZ cells. Statistically significant differences were found in ROS levels of GA-nanofibers compared with free GA on NOZ cells. Differently, ROS production on GB-d1 cell line was similar. Based on these results, the coaxial nanofibers obtained in this study under optimized operational conditions offer an alternative for the development of a GA release system with improved chemopreventive action on gallbladder cancer cells.


Asunto(s)
Anticarcinógenos/administración & dosificación , Antineoplásicos/administración & dosificación , Ácido Gálico/administración & dosificación , Nanofibras/administración & dosificación , Polietilenglicoles/administración & dosificación , Zeína/administración & dosificación , Anticarcinógenos/química , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioprevención , Liberación de Fármacos , Neoplasias de la Vesícula Biliar/prevención & control , Ácido Gálico/química , Humanos , Concentración de Iones de Hidrógeno , Nanofibras/química , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo , Zeína/química
3.
Langmuir ; 32(14): 3331-9, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26986801

RESUMEN

Formulation of antioxidant agents is still a challenge that limits their application in the biomedical field. Pentablock copolymers obtained through modification of two common PEO-PPO-PEO copolymers (Pluronic F127 and F68) with poly(ε-carprolactone) (PCL) were evaluated regarding their capability to form nanocarriers suitable for gallic acid, methyl gallate, and ethyl gallate. Applying a dialysis method, PCL/F127/PCL and PCL/F68/PCL self-assembled into spherical micelles in 0.9% NaCl aqueous solution but notably differed in critical micellar concentration (CMC), micelle core hydrophobicity, and micelle size, as evidenced by pyrene fluorescence, transmission electron microscopy, and dynamic light scattering. Cytotoxicity studies showed that the copolymers were safe at concentrations well above the CMC. Transfer of gallic acid and derivatives from aqueous medium to the micelle phase was characterized in terms of distribution constant and free energy of transference, which were shown to be strongly dependent on the hydrophobicity of the gallate derivatives and the length of PCL in the pentablock copolymer. Antioxidant activity of gallates was challenged against DPPH previously loaded in PCL/F127/PCL and PCL/F68/PCL micelles. The more the hydrophobicity of the gallate derivative, the greater the capability to enter in the micelle and to consume free radicals. In vitro release studies of gallic acid, methyl gallate, and ethyl gallate from the pentablock copolymer micelles also evidenced the influence of the hydrophobicity of both the gallate derivative and the micelle core on release rate, recording a variety of release patterns. Overall, PCL/F127/PCL and PCL/F68/PCL appear as suitable nanocarriers of potent antioxidant agents in a wide range of polarities, which may be useful for diverse therapeutic applications.


Asunto(s)
Materiales Biocompatibles/química , Ácido Gálico/química , Poloxámero/análogos & derivados , Poliésteres/química , Animales , Antioxidantes/química , Células 3T3 BALB , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/toxicidad , Compuestos de Bifenilo/química , Liberación de Fármacos , Ácido Gálico/análogos & derivados , Ratones , Micelas , Tamaño de la Partícula , Picratos/química , Poloxámero/síntesis química , Poloxámero/química , Poloxámero/toxicidad , Poliésteres/síntesis química , Poliésteres/toxicidad , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...