Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 585(7824): 225-233, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908268

RESUMEN

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Asunto(s)
Atmósfera/química , Butadienos/análisis , Butadienos/química , Mapeo Geográfico , Hemiterpenos/análisis , Hemiterpenos/química , Imágenes Satelitales , África , Australia , Brasil , Conjuntos de Datos como Asunto , El Niño Oscilación del Sur , Formaldehído/química , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Ciclo del Nitrógeno , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Oxidación-Reducción , Estaciones del Año , Sudeste de Estados Unidos
2.
ACS Cent Sci ; 6(5): 684-694, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32490185

RESUMEN

Inland sources of particulate chloride for atmospheric nitryl chloride (ClNO2) formation remain unknown and unquantified, hindering air quality assessments. Globally each winter, tens of millions of tons of road salt are spread on roadways for deicing. Here, we identify road salt aerosol as the primary chloride aerosol source, accounting for 80-100% of ClNO2 formation, at an inland urban area in the wintertime. This study provides experimental evidence of the connection between road salt and air quality through the production of this important reservoir for nitrogen oxides and chlorine radicals, which significantly impact atmospheric composition and pollutant fates. A numerical model was employed to quantify the contributions of chloride sources to ClNO2 production. The traditional method for simulating ClNO2 considers chloride to be homogeneously distributed across the atmospheric particle population; yet, we show that only a fraction of the particulate surface area contains chloride. Our new single-particle parametrization considers this heterogeneity, dramatically lowering overestimations of ClNO2 levels that have been routinely reported using the prevailing methods. The identification of road salt as a ClNO2 source links this common deicing practice to atmospheric composition and air quality in the urban wintertime environment.

3.
Environ Sci Technol ; 53(14): 8057-8067, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31184868

RESUMEN

Atomic chlorine (Cl) is a strong atmospheric oxidant that shortens the lifetimes of pollutants and methane in the springtime Arctic, where the molecular halogens Cl2 and BrCl are known Cl precursors. Here, we quantify the contributions of reactive chlorine trace gases and present the first observations, to our knowledge, of ClNO2 (another Cl precursor), N2O5, and HO2NO2 in the Arctic. During March - May 2016 near Utqiagvik, Alaska, up to 21 ppt of ClNO2, 154 ppt of Cl2, 27 ppt of ClO, 71 ppt of N2O5, 21 ppt of BrCl, and 153 ppt of HO2NO2 were measured using chemical ionization mass spectrometry. The main Cl precursor was calculated to be Cl2 (up to 73%) in March, while BrCl was a greater contributor (63%) in May, when total Cl production was lower. Elevated levels of ClNO2, N2O5, Cl2, and HO2NO2 coincided with pollution influence from the nearby town of Utqiagvik and the North Slope of Alaska (Prudhoe Bay) Oilfields. We propose a coupled mechanism linking NOx with Arctic chlorine chemistry. Enhanced Cl2 was likely the result of the multiphase reaction of Cl-(aq) with ClONO2, formed from the reaction of ClO and NO2. In addition to this NOx-enhanced chlorine chemistry, Cl2 and BrCl were observed under clean Arctic conditions from snowpack photochemical production. These connections between NOx and chlorine chemistry, and the role of snowpack recycling, are important given increasing shipping and fossil fuel extraction predicted to accompany Arctic sea ice loss.


Asunto(s)
Cloro , Óxidos de Nitrógeno , Alaska , Regiones Árticas , Halógenos
4.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837467

RESUMEN

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

5.
Sci Total Environ ; 635: 1110-1123, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710566

RESUMEN

We make future projections of seasonal precipitation characteristics in southern Florida using a statistical downscaling approach based on Self Organized Maps. Our approach is applied separately to each three-month season: September-November; December-February; March-May; and June-August. We make use of 19 different simulations from the Coupled Model Inter-comparison Project, phase 5 (CMIP5) and generate an ensemble of 1500 independent daily precipitation surrogates for each model simulation, yielding a grand ensemble of 28,500 total realizations for each season. The center and moments (25%ile and 75%ile) of this distribution are used to characterize most likely scenarios and their associated uncertainties. This approach is applied to 30-year windows of daily mean precipitation for both the CMIP5 historical simulations (1976-2005) and the CMIP5 future (RCP 4.5) projections. For the latter case, we examine both the "near future" (2021-2050) and "far future" (2071-2100) periods for three scenarios (RCP2.6, RCP4.5, and RCP8.5).

6.
J Geophys Res Atmos ; 122(17): 9467-9484, 2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-29308343

RESUMEN

Elevated water vapor (H2Ov) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emissions estimates range between 1.6 × 104 and 1.7 × 105 kg s-1, and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C day-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

7.
Ecology ; 98(3): 762-772, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984665

RESUMEN

Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired.


Asunto(s)
Cambio Climático , Humedales , Ecosistema , Suelo , Temperatura
8.
Plant Physiol ; 166(4): 2051-64, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25318937

RESUMEN

The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.


Asunto(s)
Butadienos/metabolismo , Carbono/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Terpenos/metabolismo , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Ambiente , Calor , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Temperatura , Árboles/efectos de la radiación
9.
Sci Total Environ ; 499: 228-37, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25192929

RESUMEN

The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Monitoreo del Ambiente , Aerosoles , China , Modelos Químicos , Ozono/análisis , Material Particulado/análisis , Dióxido de Azufre/análisis , Viento
10.
Oecologia ; 160(3): 411-20, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19352722

RESUMEN

Chemical signals play important roles in ecological interactions but are vulnerable to perturbation by air pollution. In polluted air masses, signals may travel shorter distances before being destroyed by chemical reactions with pollutants, thus losing their specificity. To determine which scent-mediated interactions are likely to be affected, we review existing literature to build a picture of what chemicals are commonly found in such interactions and the spatial scales at which interactions occur. We find that pollination, attraction of natural enemies of plant pests, aggregation pheromones, and mate attraction are likely to be affected. We review the scant literature on this topic and extend the hypothesis to include heretofore unexplored interactions. New research should investigate whether air pollution deleteriously affects populations of organisms that rely on scent plumes. Additionally, we need to investigate whether or not breakdown products created by the reaction of signaling chemicals with pollutants can provide usable signals, and whether or not there has been adaptation on the part of scent emitters or receivers to use either breakdown products or more robust chemical signals. The proposed research will necessarily draw on tools from atmospheric science, evolutionary biology, and ecology in furthering our understanding of the ecological implications of how air pollution modifies the scentscape.


Asunto(s)
Adaptación Fisiológica/fisiología , Contaminación del Aire/efectos adversos , Comunicación Animal , Ecosistema , Odorantes/análisis , Animales , Oxidación-Reducción , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
11.
Ambio ; 31(1): 21-7, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11928353

RESUMEN

The goal of this study is to investigate the impact of deforestation on ozone dynamics and deposition in the Brazilian Amazon basin. This goal is accomplished through i) analyses of ozone levels and deposition rates at a deforested site during the rainy season; and ii) comparisons of these data with similar information derived at a forest. At the pasture site maximum ozone mixing ratios reach 20 parts per billion on a volume basis (ppbv) but about 6 ppbv prevail over the forest. Maximum ozone deposition velocities for pastures can reach 0.7 cm s-1, which is about threefold lower than values derived for forests. Combining ozone abundance and deposition velocities, pasture maximum ozone fluxes reach approximately 0.2 microgram (ozone) m-2 s-1. This flux represents approximately 70% of the deposition rates measured over the forest. Hence, this study suggests that conversion of rainforests to pastures could lead to a net reduction (30%) in the ozone sink in the Amazon.


Asunto(s)
Oxidantes Fotoquímicos/análisis , Ozono/análisis , Árboles , Agricultura , Animales , Animales Domésticos , Brasil , Monitoreo del Ambiente , Agricultura Forestal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...