Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Morphol ; 281(9): 1110-1132, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757228

RESUMEN

It has long been assumed that serial homologues are ancestrally similar-polysomerism resulting from a "duplication" or "repetition" of forms-and then often diverge-anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how "homologous" patterning domains do not necessarily mark "homologous" morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called "serial homologues" might not be similar at all, recent works have shown that in at least some cases some "serial" structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called "serial homologues" such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures-for example, vertebra-and/or their subparts-for example, "transverse processes"-many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.


Asunto(s)
Estructuras Animales/anatomía & histología , Filogenia , Animales , Huesos/anatomía & histología , Plumas/anatomía & histología , Alas de Animales/anatomía & histología
2.
Sci Rep ; 9(1): 7821, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127169

RESUMEN

The ill-named "logic of monsters" hypothesis of Pere Alberch - one of the founders of modern evo-devo - emphasized the importance of "internal rules" due to strong developmental constraints, linked teratologies to developmental processes and patterns, and contradicted hypotheses arguing that birth defects are related to a chaotic and random disarray of developmental mechanisms. We test these hypotheses using, for the first time, anatomical network analysis (AnNA) to study and compare the musculoskeletal modularity and integration of both the heads and the fore- and hindlimbs of abnormal cyclopic trisomy 18 and anencephalic human fetuses, and of normal fetal, newborn, and adult humans. Our previous works have shown that superficial gross anatomical analyses of these specimens strongly support the "logic of monsters" hypothesis, in the sense that there is an 'order' or 'logic' within the gross anatomical patterns observed in both the normal and abnormal individuals. Interestingly, the results of the AnNA done in the present work reveal a somewhat different pattern: at least concerning the musculoskeletal modules obtained in our AnNA, we observe a hybrid between the "logic of monsters" and the "lack of homeostasis" hypotheses. For instance, as predicted by the latter hypothesis, we found a high level of left-right asymmetry in the forelimbs and/or hindlimbs of the abnormal cyclopic trisomy 18 and anencephalic human fetuses. That is, a network analysis of the organization of/connection between the musculoskeletal structures of these fetuses reveals a more "chaotic" pattern than that detected by superficial gross anatomical comparisons. We discuss the broader developmental, evolutionary, and medical implications of these results.


Asunto(s)
Anencefalia/fisiopatología , Holoprosencefalia/fisiopatología , Desarrollo Musculoesquelético/fisiología , Teratogénesis/fisiología , Teratología/métodos , Adulto , Brazo/anomalías , Brazo/crecimiento & desarrollo , Femenino , Desarrollo Fetal/fisiología , Feto/anomalías , Cabeza/anomalías , Cabeza/crecimiento & desarrollo , Homeostasis/fisiología , Humanos , Recién Nacido , Pierna/anomalías , Pierna/crecimiento & desarrollo , Masculino
3.
Sci Rep ; 9(1): 991, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700788

RESUMEN

This paper is part of the emerging field of Evolutionary Developmental Pathology, dedicated to study the links between normal and abnormal development, evolution and human pathologies. We analyzed the head musculoskeletal system of several 'natural mutant' newborn lambs displaying various degrees of abnormality, from mild defects to cebocephaly and to cyclopia, and compared them with humans. Interestingly, muscle defects are less marked than osteological ones, and contrarily to the latter they tend to display left-right assymetries. In individuals with cebocephalic and even cyclopic skulls almost all head muscles are normal. The very few exceptions are some extraocular muscles and facial muscles that normally attach to osteological structures that are missing in the abnormal heads: such muscles are instead attached to the 'nearest topological neighbor' of the missing osteological structure, a pattern also found in cyclopic humans. These observations support Alberch's ill-named "logic of monsters" - as a byproduct of strong developmental/topological constraints anatomical patterns tend to repeat themselves, even severe malformations displayed by distantly related taxa. They also support the idea that mammalian facial muscles reverted to an ancestral 'nearest-neighbor' muscle-bone type of attachment seen in non-vertebrate animals and in vertebrate limbs, but not in other vertebrate head muscles.


Asunto(s)
Evolución Biológica , Cabeza/anomalías , Holoprosencefalia/patología , Anomalías Musculoesqueléticas/patología , Oveja Doméstica/anomalías , Animales , Animales Recién Nacidos , Cabeza/patología , Humanos , Recién Nacido , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...