Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 12(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268512

RESUMEN

African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE). In Mus dunni (a wild mouse fibroblast cell line), MDCK (Madin-Darby canine kidney cell line), FRhK-4 (a fetal rhesus kidney cell line), and MRC-5 (a human fetal lung cell line), SFVcae_FV2014 infection was productive resulting in CPE, and had delayed or similar replication kinetics compared with SFVmcy_FV21 and SFVmcy_FV34[RF], which are two Taiwanese macaque isolates, designated as serotypes 1 and 2, respectively. However, in Vero (AGM kidney cell line) and A549 (a human lung carcinoma cell line), the replication kinetics of SFVcae_FV2014 and the SFVmcy viruses were discordant: In Vero, SFVcae_FV2014 showed rapid replication kinetics and extensive CPE, and a persistent infection was seen in A549, with delayed, low CPE, which did not progress even upon extended culture (day 55). Nucleotide sequence analysis of the assembled SFVcae_FV2014 genome, obtained by high-throughput sequencing, indicated an overall 80-90% nucleotide sequence identity with SFVcae_LK3, the only available full-length genome sequence of an AGM SFV, and was distinct phylogenetically from other AGM spumaretroviruses, corroborating previous results based on analysis of partial env sequences. Our study confirmed that SFVcae_FV2014 and SFVcae_LK3 are genetically distinct AGM foamy virus (FV) isolates. Furthermore, comparative infectivity studies of SFVcae_FV2014 and SFVmcy isolates showed that although SFVs have a wide host range and cell tropism, regulation of virus replication is complex and depends on the virus strain and cell-specific factors.


Asunto(s)
Genoma Viral , Spumavirus/genética , Replicación Viral , Células A549 , Animales , Línea Celular , Chlorocebus aethiops , Efecto Citopatogénico Viral , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cinética , Macaca , Ratones , Filogenia , Serogrupo , Spumavirus/clasificación , Spumavirus/fisiología
2.
Future Microbiol ; 5(1): 9-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20020826

RESUMEN

Paramyxoviruses include many important human and animal pathogens such as measles virus, mumps virus, human parainfluenza viruses, and respiratory syncytial virus, as well as emerging viruses such as Nipah virus and Hendra virus. The paramyxovirus RNA-dependent RNA polymerase consists of the phosphoprotein (P) and the large protein. Both of these proteins are essential for viral RNA synthesis. The P protein is phosphorylated at multiple sites, probably by more than one host kinase. While it is thought that the phosphorylation of P is important for its role in viral RNA synthesis, the precise role of P protein phosphorylation remains an enigma. For instance, it was demonstrated that the putative CKII phosphorylation sites of the P protein of respiratory syncytial virus play a role in viral RNA synthesis using a minigenome replicon system; however, mutating these putative CKII phosphorylation sites within a viral genome had no effect on viral RNA synthesis, leading to the hypothesis that P protein phosphorylation, at least by CKII, does not play a role in viral RNA synthesis. Recently, it has been reported that the phosphorylation state of the P protein of parainfluenza virus 5, a prototypical paramyxovirus, correlates with the ability of P protein to synthesize viral RNA, indicating that P protein phosphorylation does in fact play a role in viral RNA synthesis. Furthermore, host kinases PLK1, as well as AKT1 have been found to play critical roles in paramyxovirus RNA synthesis through regulation of P protein phosphorylation status. Beyond furthering our understanding of paramyxovirus RNA replication, these recent discoveries may also result in a new paradigm in treating infections caused by these viruses, as host kinases that regulate paramyxovirus replication are investigated as potential targets of therapeutic intervention.


Asunto(s)
Regulación Viral de la Expresión Génica , Paramyxoviridae/fisiología , Fosfoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Humanos , Fosforilación , ARN Viral/metabolismo , Replicación Viral
3.
J Virol ; 82(1): 105-14, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959676

RESUMEN

The order Mononegavirales (comprised of nonsegmented negative-stranded RNA viruses or NNSVs) contains many important pathogens. Parainfluenza virus 5 (PIV5), formerly known as simian virus 5, is a prototypical paramyxovirus and encodes a V protein, which has a cysteine-rich C terminus that is conserved among all paramyxoviruses. The V protein of PIV5, like that of many other paramyxoviruses, plays an important role in regulating viral RNA synthesis. In this work, we show that V interacts with Akt, a serine/threonine kinase, also known as protein kinase B. Both pharmacological inhibitors and small interfering RNA against Akt1 reduced PIV5 replication, indicating that Akt plays a critical role in PIV5 replication. Furthermore, treatment with Akt inhibitors also reduced the replication of several other paramyxoviruses, as well as vesicular stomatitis virus, the prototypical rhabdovirus, indicating that Akt may play a more universal role in NNSV replication. The phosphoproteins (P proteins) of NNSVs are essential cofactors for the viral RNA polymerase complex and require heavy phosphorylation for their activity. Inhibition of Akt activity reduced the level of P phosphorylation, suggesting that Akt is involved in regulating viral RNA synthesis. In addition, Akt1 phosphorylated a recombinant P protein of PIV5 purified from bacteria. The finding that Akt plays a critical role in replication of NNSV will lead to a better understanding of how these viruses replicate, as well as novel strategies to treat infectious diseases caused by NNSVs.


Asunto(s)
Virus de la Parainfluenza 5/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Animales , Bovinos , Línea Celular , Chlorocebus aethiops , Humanos , Virus de la Parainfluenza 5/fisiología , Paramyxovirinae/crecimiento & desarrollo , Fosfoproteínas/fisiología , Fosforilación , Unión Proteica , Vesiculovirus/crecimiento & desarrollo , Proteínas Virales/fisiología
4.
Virology ; 368(2): 262-72, 2007 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-17692882

RESUMEN

The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-beta production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-beta promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-alpha and IL-1beta, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses. Many viruses have developed strategies to block IL-6 expression. Wild-type PIV5 infection induces little, if any, expression of cytokines such as IL-6 or TNF-alpha, whereas infection by a mutant PIV5 lacking the conserved C-terminal cysteine rich domain (rPIV5VDeltaC) induced high levels of IL-6 expression. Examination of mRNA levels of IL-6 indicated that the transcription activation of IL-6 played an important role in the increased IL-6 expression. Co-infection with wild-type PIV5 prevented the activation of IL-6 transcription by rPIV5VDeltaC, and a plasmid encoding the full-length PIV5 V protein prevented the activation of IL-6 promoter-driven reporter gene expression by rPIV5VDeltaC, indicating that the V protein played a role in inhibiting IL-6 transcription. The activation of IL-6 was independent of IFN-beta even though rPIV5VDeltaC-infected cells produced IFN-beta. Using reporter gene assays and chromatin immunoprecipitation (ChIP), it was found that NF-kappaB played an important role in activating expression of IL-6. We have proposed a model of activating and inhibiting IL-6 transcription by PIV5.


Asunto(s)
Regulación de la Expresión Génica , Interleucina-6/metabolismo , Virus de la Parainfluenza 5/patogenicidad , Proteínas Estructurales Virales/farmacología , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Genes Reporteros , Células HeLa , Humanos , Interleucina-6/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/metabolismo , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
5.
J Virol ; 80(4): 1700-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16439527

RESUMEN

Mumps virus (MuV), a rubulavirus of the paramyxovirus family, causes acute infections in humans. MuV has seven genes including a small hydrophobic (SH) gene, which encodes a type I membrane protein of 57 amino acid residues. The function of the SH protein is not clear, although its expression is not necessary for growth of MuV in tissue culture cells. It is speculated that MuV SH plays a role in viral pathogenesis. Simian virus 5 (SV5), a closely related rubulavirus, encodes a 44-amino-acid-residue SH protein. Recombinant SV5 lacking the SH gene (rSV5DeltaSH) is viable and has no growth defect in tissue culture cells. However, rSV5DeltaSH induces apoptosis in tissue culture cells and is attenuated in vivo. Neutralizing antibodies against tumor necrosis factor alpha (TNF-alpha) and TNF-alpha receptor 1 block rSV5DeltaSH-induced apoptosis, suggesting that SV5 SH plays an essential role in blocking the TNF-alpha-mediated apoptosis pathway. Because MuV is closely related to SV5, we hypothesize that the SH protein of MuV has a function similar to that of SV5, even though there is no sequence homology between them. To test this hypothesis and to study the function of MuV SH, we have replaced the open reading frame (ORF) of SV5 SH with the ORF of MuV SH in a SV5 genome background. The recombinant SV5 (rSV5DeltaSH+MuV-SH) was analyzed in comparison with SV5. It was found that rSV5DeltaSH+MuV-SH was viable and behaved like wild-type SV5, suggesting that MuV SH has a function similar to that of SV5 SH. Furthermore, both ectopically expressed SV5 SH and MuV SH blocked activation of NF-kappaB by TNF-alpha in a reporter gene assay, suggesting that both SH proteins can inhibit TNF-alpha signaling.


Asunto(s)
Virus de la Parotiditis/fisiología , Virus de la Parainfluenza 5/fisiología , Proteínas Oncogénicas de Retroviridae/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Proteínas Virales/fisiología , Animales , Apoptosis , Bovinos , Línea Celular , Chlorocebus aethiops , Efecto Citopatogénico Viral , Humanos , Ratones , Modelos Biológicos , Virus de la Parotiditis/genética , Virus de la Parainfluenza 5/genética , Recombinación Genética , Proteínas Oncogénicas de Retroviridae/genética , Ensayo de Placa Viral , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...