Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 849: 157867, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35944624

RESUMEN

Assessing the carbon footprint of marine bivalve aquaculture demands an accurate estimation of the CO2 release associated to capital goods and aquaculture operations but also to the metabolic CO2 budget of the cultured species. Nowadays, there are discrepancies on the processes to include in that budget, how to estimate them, and which scale should be applied, from individual to ecosystem. Site-specific environmental conditions and culture methods also affect significantly the estimates. Here, we have gathered environmental, biochemical and metabolic data from published scientific articles, reports and existing databases to present the metabolic CO2 budget for mussel aquaculture in the coastal inlets of the Northwest Iberian upwelling. We analyse the contribution of mussel flesh and shell production jointly and separately. At the individual scale, the shell CO2 budget is estimated from CO2 removal by shell matrix protein synthesis and CO2 release during calcification and respiration to support shell maintenance. Organic carbon in mussel flesh and CO2 released by respiration to support flesh maintenance contribute to the flesh CO2 budget. Only calcification and respiration processes are considered when estimating the metabolic carbon footprint of individual mussels because organic carbon in mussel flesh and shell returns to the atmosphere as CO2 in a relatively short period. While the metabolic carbon footprint associated to mussel shell remains constant at 365 kg CO2 per ton of shell, it varies from 92 to 578 kg CO2 per ton of mussel flesh. This large variability depends on mussel seeding time and harvesting size, due to the differential seasonal growth patterns of flesh and shell. Inclusion of the CO2 potentially immobilised in mussel faeces buried in the sediments would lead to a reduction of the metabolic carbon footprint estimates by up to 6 % compared with the individual estimates.


Asunto(s)
Bivalvos , Ecosistema , Animales , Acuicultura , Carbono , Dióxido de Carbono
2.
Sci Rep ; 11(1): 22926, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824324

RESUMEN

Climate change is already impacting fisheries with species moving across fishing areas, crossing institutional borders, and thus creating conflicts over fisheries management. In this scenario, scholars agree that adaptation to climate change requires that fisheries increase their social, institutional, and ecological resilience. The resilience or capacity of a fishery to be maintained without shifting to a different state (e.g., collapse) is at stake under climate change impacts and overexploitation. Despite this urgent need, applying the resilience concept in a spatially explicit and quantitative manner to inform policy remains unexplored. We take a resilience approach and operationalize the concept in industrial fisheries for two species that have been observed to significantly shift distribution in European waters: hake (Merluccius merluccius) and cod (Gadus morhua), in the context of the European Union institutional settings. With a set of resilience factors from the literature and by means of contemporary and historic data, we select indicators that are combined into an index that measures resilience on the ecologic, socioeconomic, and institutional dimensions of the fishery. We find that the resilience index varies among species and countries, with lower resilience levels in the socioeconomic dimension of the fisheries. We also see that resilience largely depends on the overexploitation status of the fishery. The results highlight the need to address social and institutional settings to enhance fisheries adaptation to climate change and allow to inform on climate resilient adaptation pathways for the fisheries.

3.
Sci Total Environ ; 775: 145020, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33621880

RESUMEN

Forecasting of climate change impacts on marine aquaculture production has become a major research task, which requires taking into account the biases and uncertainties arising from ocean climate models in coastal areas, as well as considering culture management strategies. Focusing on the suspended mussel culture in the NW Iberian coastal upwelling system, we simulated current and future mussel growth by means of a multistructural net production Dynamic Energy Budget (DEB) model. We considered two scenarios and three ocean climate models to account for climate uncertainty, and applied a bias correction to the climate models in coastal areas. Our results show that the predicted impact of climate change on mussel growth is low compared with the role of the seeding time. However, the response of mussels varied across climate models, ranging from a minor growth decline to a moderate growth increase. Therefore, this work confirms that an accurate forecasting of climate change impacts on shellfish aquaculture should take into account the variability linked to both management strategies and climate uncertainty.


Asunto(s)
Bivalvos , Mytilus , Animales , Acuicultura , Cambio Climático , Alimentos Marinos
4.
PLoS One ; 13(10): e0205981, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335841

RESUMEN

Determining the magnitude and causes of intrinsic variability is a main issue in the analysis of bivalve growth. Inter-individual variability in bivalve growth has been attributed to differences in the physiological performance. This hypothesis has been commonly tested comparing the physiological rates of fast and slow growers after size differentiation has occurred. This experimental design may detect a link between growth and physiological performance, but we cannot interpret the posterior physiological performance as a driver for the prior growth variability. Considering these limitations, this work introduces a new methodological framework for the analysis of bivalve growth variability. We have conducted sequential measurements of size and physiological performance (feeding, digestion and metabolic rates) in even-sized mussels growing under homogeneous environmental conditions. This experimental design allows us to distinguish between changes over time within individuals, i.e. growth and trends in the physiological rates, from differences between individuals with respect to a baseline level. In addition, Functional Data Analysis provides powerful tools to summarize all the information obtained in the exhaustive sampling scheme and to test whether differences in the physiological performance enhance growth dispersion. Our results report an increasing dispersion in both size and physiological performance over time. Although mussels grew during the experiment, it is difficult to detect any increasing or decreasing temporal pattern in their feeding, digestion and metabolic rates due to the large inter-individual variability. Comparison between the growth and physiological patterns of mussels with final size above (fast growers) and below (slow growers) the median found that fast growers had larger feeding and digestion rates and lower metabolic expenditures during the experimental culture than mussels with slow growth, which agrees with the hypothesis of a physiological basis for bivalve growth variability.


Asunto(s)
Análisis de Datos , Mytilus/crecimiento & desarrollo , Mytilus/fisiología , Análisis de Varianza , Exoesqueleto/anatomía & histología , Animales , Biomasa , Digestión/fisiología , Conducta Alimentaria/fisiología , Mytilus/anatomía & histología , Mytilus/metabolismo
5.
Mar Environ Res ; 127: 41-48, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28342651

RESUMEN

Understanding biological processes, such as growth, is crucial to development management and sustainability plans for bivalve populations. Von Bertalanffy and Gompertz models have been commonly used to fit bivalve growth. These models assume that individual growth is only determined by size, overlooking the effects of environmental and intrinsic conditions on growth patterns. The comparison between classical models and nonparametric GAM (generalized additive models) fits conducted in this work shows that the latter provide a more realistic approach of mussel growth measured in terms of shell length, and dry weight of hard and soft tissues. GAM fits detected a reduction in growth during the cold season, under unfavourable nutritional conditions. These fits also captured the decoupling between hard and soft tissue growth, widely addressed in the literature but not incorporated in growth models. In addition a GAM fit of condition index allowed us to explain annual changes in resources allocation, identifying the asymptotic growth of shell and the effects of the reproductive cycle on soft tissue fluctuations.


Asunto(s)
Bivalvos/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Modelos Biológicos , Modelos Teóricos , Animales , Ambiente
6.
Sci Rep ; 6: 29405, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384527

RESUMEN

Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance.


Asunto(s)
Bivalvos , Biología Marina , Energía Solar , Animales , Bivalvos/crecimiento & desarrollo , Monitoreo del Ambiente , Conducta Alimentaria , Larva , Modelos Teóricos , Dinámica Poblacional , Probabilidad , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...