Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738661

RESUMEN

Cancer cells produce vast quantities of reactive oxygen species, leading to the accumulation of toxic nucleotides as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). The human MTH1 protein catalyzes the hydrolysis of 8-oxo-dGTP, and cancer cells are dependent on MTH1 for their survival. MTH1 inhibitors are possible candidates for a class of anticancer drugs; however, a reliable screening system using live cells has not been developed. Here we report a visualization method for 8-oxo-dGTP and its related nucleotides in living cells. Escherichia coli MutT, a functional homologue of MTH1, is divided into the N-terminal (1-95) and C-terminal (96-129) parts (Mu95 and 96tT, respectively). Mu95 and 96tT were fused to Ash (assembly helper tag) and hAG (Azami Green), respectively, to visualize the nucleotides as fluorescent foci formed upon the Ash-hAG association. The foci were highly increased when human cells expressing Ash-Mu95 and hAG-96tT were treated with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-dGTP. The foci formation by 8-oxo-dG(TP) was strikingly enhanced by the MTH1 knockdown. Moreover, known MTH1 inhibitors and oxidizing reagents also increased foci. This is the first system that visualizes damaged nucleotides in living cells, provides an excellent detection method for the oxidized nucleotides and oxidative stress, and enables high throughput screening for MTH1 inhibitors.

2.
DNA Repair (Amst) ; 111: 103276, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101777

RESUMEN

Oxidatively damaged bases induce mutations and are involved in cancer initiation. 8-Oxo-7,8-dihydroguanine (G°, 8-hydroxyguanine) is an abundant oxidized base that induces targeted G:C→T:A transversions in human cells, as well as untargeted base substitution (action-at-a-distance) mutations of the G bases of 5'-GpA-3' dinucleotides. The action-at-a-distance mutations become more frequent than the targeted transversions when the amount of Werner syndrome (WRN) protein is decreased. In this study, OGG1, the major DNA glycosylase for the damaged base, and WRN were knocked down in isolation and in combination in human U2OS cells, and a shuttle plasmid carrying G° was introduced into the knockdown cells. Interestingly, fewer action-at-a-distance mutations were observed in the WRN plus OGG1 double knockdown cells, as compared to the WRN single knockdown cells. These results indicated the paradoxical role of OGG1, as an accelerator of the action-at-a-distance mutations by the oxidized guanine base.


Asunto(s)
ADN Glicosilasas/metabolismo , Síndrome de Werner , Daño del ADN , ADN Glicosilasas/genética , Reparación del ADN , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Mutación , Síndrome de Werner/metabolismo
3.
Genes Cells ; 25(2): 124-138, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31917895

RESUMEN

Translesion synthesis (TLS) polymerases mediate DNA damage bypass during replication. The TLS polymerase Rev1 has two important functions in the TLS pathway, including dCMP transferase activity and acting as a scaffolding protein for other TLS polymerases at the C-terminus. Because of the former activity, Rev1 bypasses apurinic/apyrimidinic sites by incorporating dCMP, whereas the latter activity mediates assembly of multipolymerase complexes at the DNA lesions. We generated rev1 mutants lacking each of these two activities in Oryzias latipes (medaka) fish and analyzed cytotoxicity and mutagenicity in response to the alkylating agent diethylnitrosamine (DENA). Mutant lacking the C-terminus was highly sensitive to DENA cytotoxicity, whereas mutant with reduced dCMP transferase activity was slightly sensitive to DENA cytotoxicity, but exhibited a higher tumorigenic rate than wild-type fish. There was no significant difference in the frequency of DENA-induced mutations between mutant with reduced dCMP transferase activity and wild-type cultured cell. However, loss of heterozygosity (LOH) occurred frequently in cells with reduced dCMP transferase activity. LOH is a common genetic event in many cancer types and plays an important role on carcinogenesis. To our knowledge, this is the first report to identify the involvement of the catalytic activity of Rev1 in suppression of LOH.


Asunto(s)
Pérdida de Heterocigocidad , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oryzias/genética , Animales , Animales Modificados Genéticamente , Carcinogénesis , Línea Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Femenino , Regulación de la Expresión Génica , Hígado/patología , Masculino , Mutagénesis , Mutación , Proteínas Recombinantes , Transcriptoma
4.
Toxicol Res ; 33(4): 265-272, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29071010

RESUMEN

Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the N2 or C8 positions of guanine or the N6 position of adenine. The proportion of N2 and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol η, κ, ι, and ζ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-N2-yl)-3-aminobenzanthrone (dG-N2-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-N2-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-N2-ABA. dG-N2-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol η and κ are stronger contributors to TLS over dG-C8-ABA, and Pol κ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

5.
Photochem Photobiol ; 93(1): 315-322, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861979

RESUMEN

Proteins of the cryptochrome/photolyase family (CPF) exhibit sequence and structural conservation, but their functions are divergent. Photolyase is a DNA repair enzyme that catalyzes the light-dependent repair of ultraviolet (UV)-induced photoproducts, whereas cryptochrome acts as a photoreceptor or circadian clock protein. Two types of DNA photolyase exist: CPD photolyase, which repairs cyclobutane pyrimidine dimers (CPDs), and 6-4 photolyase, which repairs 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs). Although the Cry-DASH protein is classified as a cryptochrome, it also has light-dependent DNA repair activity. To determine the significance of the three light-dependent repair enzymes in recovering from solar UV-induced DNA damage at the organismal level, we generated mutants in each gene in medaka using the CRISPR genome editing technique. The light-dependent repair activity of the mutants was examined in vitro in cultured cells and in vivo in skin tissue. Light-dependent repair of CPD was lost in the CPD photolyase-deficient mutant, whereas weak repair activity against 6-4PPs persisted in the 6-4 photolyase-deficient mutant. These results suggest the existence of a heretofore unknown 6-4PP repair pathway and thus improve our understanding of the mechanisms of defense against solar UV in vertebrates.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/genética , Mutación , Oryzias/genética , Rayos Ultravioleta , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Criptocromos/metabolismo , Daño del ADN , Reparación del ADN , Dímeros de Pirimidina/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-25344160

RESUMEN

Cisplatin (cis-diamminedichloroplatinum(II)), a widely used anticancer drug, forms inter- and intra-strand DNA crosslinks. The major intra-strand crosslinks are Pt adducts at 1,2-d(GpG) and 1,3-d(GpNpG) (Pt-GG and Pt-GNG, respectively). Although most of the intra-strand crosslinks are removed by the nucleotide excision repair (NER), the remaining crosslinks can cause mutations through the translesion DNA synthesis (TLS) during chromosome replication. To understand the precise mechanism of cisplatin mutagenesis in human cells, the plasmid carrying a single Pt-GG or 1,3-d(GpTpG) crosslink (Pt-GTG) site-specifically in lacZ gene was constructed and propagated in NER-defective xeroderma pigmentosum cells. The plasmids retrieved from the cells were introduced into indicator bacterial cells to access frequencies of TLS and mutations. The experiments revealed that Pt-GTG blocked DNA replication more strongly and caused more mutations (29.1%) than Pt-GG (1.7%). Most mutations were G to A or T base changes at 5' G residue in the Pt-GTG crosslinks. These results indicate that the Pt-GTG crosslinks become effective obstacles for cancer cell division, and have an important role for cisplatin cancer therapy.


Asunto(s)
Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Guanina/farmacología , Mutágenos/toxicidad , Reparación del ADN , Humanos , Operón Lac , Mutagénesis/efectos de los fármacos , Plásmidos/genética , Xerodermia Pigmentosa/tratamiento farmacológico
7.
Mutat Res ; 753(2): 93-100, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23567330

RESUMEN

3-Nitrobenzanthrone (3-nitro-7H-benz[d,e]anthracen-7-one, 3-NBA) is a potent environmental mutagen that is found in diesel exhaust fumes and airborne particulates. It is known to produce several DNA adducts, including three major adducts N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-ABA), 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone (dA-N(6)-C2-ABA), and 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone (dG-N(2)-C2-ABA) in mammalian cells. In the present study, we measured the quantity of the formation and subsequent reduction of these adducts in human hepatoma HepG2 cells that had been treated with 3-NBA using LC-MS/MS analysis. As a result, dG-C8-N-ABA and dG-N(2)-C2-ABA were identified as major adducts in the HepG2 cells, and dA-N(6)-C2-ABA was found to be a minor adduct. Treatment with 1µg/mL 3-NBA for 24h induced the formation of 2835±1509 dG-C8-N-ABA and 3373±1173 dG-N(2)-C2-ABA per 10(7) dG and 877±330 dA-N(6)-C2-ABA per 10(7) dA in the cells. The cellular DNA repair system removed the dG-C8-N-ABA and dA-N(6)-C2-ABA adducts more efficiently than the dG-N(2)-C2-ABA adducts. After a 24-h repair period, 86.4±11.1% of the dG-N(2)-C2-ABA adducts remained, whereas only 51.7±2.7% of the dG-C8-N-ABA adducts and 37.8±1.7% of the dA-N(6)-C2-ABA adducts were present in the cells. We also evaluated the efficiency of bypasses across these three adducts and their mutagenic potency by introducing site-specific mono-modified plasmids into human cells. This translesion DNA synthesis (TLS) assay showed that dG-C8-N-ABA blocked DNA replication markedly (its replication frequency was 16.9±2.7%), while the replication arrests induced by dG-N(2)-C2-ABA and dA-N(6)-C2-ABA were more moderate (their replication frequencies were 33.3±6.2% and 43.1±7.5%, respectively). Mutagenic TLS was observed more frequently in replication across dG-C8-N-ABA (30.6%) than in replication across dG-N(2)-C2-ABA (12.1%) or dA-N(6)-C2-ABA (12.1%). These findings provide important insights into the molecular mechanism of 3-NBA-mutagenesis.


Asunto(s)
Benzo(a)Antracenos/toxicidad , Aductos de ADN , Reparación del ADN/efectos de los fármacos , ADN/biosíntesis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Mutágenos/toxicidad , Espectrometría de Masas en Tándem
8.
J Biol Chem ; 287(17): 14289-300, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22383522

RESUMEN

We have discovered that 3,3',5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 Å resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC(50) of ~1 µm and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase δ in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser(139))histone H2AX induction and cell growth inhibition was observed.


Asunto(s)
Replicación del ADN/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Química Farmacéutica/métodos , Cromatina/metabolismo , Cristalografía por Rayos X/métodos , Diseño de Fármacos , Citometría de Flujo/métodos , Genes Reporteros , Células HeLa , Humanos , Concentración 50 Inhibidora , Ligandos , Microscopía Fluorescente/métodos , Conformación Molecular , Péptidos/química , Fosforilación , Mapeo de Interacción de Proteínas/métodos , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...