Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(16): 2222-2238, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723221

RESUMEN

Designing catalysts is a challenging matter as catalysts are involved with various factors that impact synthesis, catalysts, reactor and reaction. In order to overcome these difficulties, catalysts informatics is proposed as an alternative way to design and understand catalysts. The underlying concept of catalysts informatics is to design the catalysts from trends and patterns found in catalysts data. Here, three key concepts are introduced: experimental catalysts database, knowledge extraction from catalyst data via data science, and a catalysts informatics platform. Methane oxidation is chosen as a prototype reaction for demonstrating various aspects of catalysts informatics. This work summarizes how catalysts informatics plays a role in catalyst design. The work covers big data generation via high throughput experiments, machine learning, catalysts network method, catalyst design from small data, catalysts informatics platform, and the future of catalysts informatics via ontology. Thus, the proposed catalysts informatics would help innovate how catalysts can be designed and understood.

2.
Phys Chem Chem Phys ; 24(48): 29841-29849, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36468419

RESUMEN

Reaction networks of hydrocarbons are explored using first principles calculations, data science, and experiments. Transforming hydrocarbon data into networks reveals the prevalence of the formation and reaction of various molecules. Graph theory is implemented to extract knowledge from the reaction network. In particular, centralities analysis reveals that H+, CCC, CH3+, CC, and [CH2+]C have high degrees and are thus very likely to form or react with other molecules. Additionally, H+, CH3+, C2H5+, C8H15+, C8H17+, and C6H11+ are found to have high control throughout the network and lead towards a series of additional reactions. The constructed network is also validated in experiments while the shortest path analysis is implemented for further comparison between experiment and the network. Thus, combining network analysis with first principles calculations uncovers key points in the development of various hydrocarbons that can be used to improve catalyst design and targeted synthesis of desired hydrocarbons.


Asunto(s)
Ciencia de los Datos , Hidrocarburos , Hidrocarburos/química
3.
J Phys Chem Lett ; 12(30): 7335-7341, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34327995

RESUMEN

Identification of catalysts is a difficult matter as catalytic activities involve a vast number of complex features that each catalyst possesses. Here, catalysis gene expression profiling is proposed from unique features discovered in catalyst data collected by high-throughput experiments as an alternative way of representing the catalysts. Combining constructed catalyst gene sequences with hierarchical clustering results in catalyst gene expression profiling where natural language processing is used to identify similar catalysts based on edit distance. In addition, catalysts with similar properties are designed by modifying catalyst genes where the designed catalysts are experimentally confirmed to have catalytic activities that are associated with their catalyst gene sequences. Thus, the proposed method of catalyst gene expressions allows for a novel way of describing catalysts that allows for similarities in catalysts and catalytic activity to be easily recognized while enabling the ability to design new catalysts based on manipulating chemical elements of catalysts with similar catalyst gene sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA