Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718958

RESUMEN

The causative genes for neurodegenerative polyglutamine (polyQ) diseases produce homopolymeric polyglutamine (polyQ), polyserine (polyS), polyalanine (polyA), polycysteine (polyC), and polyleucine (polyL) sequences by repeat-associated non-AUG (RAN) translation. The cytotoxicity of the intracellular polyQ and RAN products has been extensively investigated. However, little is known about the toxicity of the extracellular polyQ and RAN products on the membranes of viable cells. Because polyQ aggregates induce a deflated morphology of a model membrane, we hypothesized that extracellular polyQ and RAN products might affect the membrane properties of viable cells. In this study, we demonstrated that exogenous polyS fibrils but not polyS or polyQ non-fibril aggregates altered the thermal phase transition behavior of a model membrane composed of a phosphatidylcholine bilayer using differential scanning calorimetry. PolyS fibrils induced morphological changes in viable red blood cells (RBCs). However, both polyS and polyQ non-fibril aggregates had no effects on RBCs. These results highlight the possibility that extracellular fibrils generated from RAN products may alter the properties of neuronal cell membranes, which may contribute to changes in the brain pathology.


Asunto(s)
Eritrocitos , Liposomas , Péptidos , Fosfatidilcolinas , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Fosfatidilcolinas/química , Humanos , Liposomas/química , Péptidos/química , Péptidos/farmacología , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/química , Transición de Fase , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
2.
PLoS One ; 19(1): e0296750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38181010

RESUMEN

Whether fibril formation increases or decreases cytotoxicity remains unclear. Aggregation of human islet amyloid polypeptide (hIAPP), a pivotal regulator of glucose homeostasis, impairs the function and viability of pancreatic ß cells. Evidence suggests that low-order oligomers of hIAPP are more toxic to ß cells than fibril. However, it remains unclear whether non-fibril form of hIAPP specifically alters brain functions. This study produced fibril and non-fibril forms from a single hIAPP 8-20 peptide. The non-fibril form-injected mice showed changes in spontaneous motor activities, preference for location in the open field and social behavior. In contrast, the fibril-injected mice showed no changes in these behavioral tests. In line with the behavioral changes, the non-fibril form led to impaired neurite outgrowth of cultured neuron-like cells and the loss of neurons in the mouse hippocampus. These findings suggest that non-fibril form but not fibril form of hIAPP changes brain functions.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Hormonas Peptídicas , Humanos , Ratones , Animales , Polipéptido Amiloide de los Islotes Pancreáticos , Citoesqueleto , Encéfalo
3.
Sci Technol Adv Mater ; 24(1): 2265431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867576

RESUMEN

Topological insulators and semimetals are an interesting class of materials for new electronic and optical applications owing to their characteristic electromagnetic responses originating from the spin-orbit coupled band structures. However, topological electronic structures are rare in oxide materials despite their chemical stability being preferable for applications. In this study, given the theoretical prediction of Dirac bands in CaPd3O4, we investigate the fabrication and transport properties of SrPd3O4 and CaPd3O4 thin films as candidates of oxide Dirac semimetals. We have found that these materials are epitaxially grown on MgO (100) substrate under limited growth conditions by pulsed laser deposition. The transport properties show a weak temperature dependence, suggestive of narrow-gap properties, although unintentionally doped holes hinder us from revealing the presence of the Dirac band. Our study establishes the basic thermodynamics of thin-film fabrication of these materials and will lead to interesting properties characteristic of topological band structure by modulating the electronic structure by, for example, chemical substitutions or pressure.

4.
Phys Rev Lett ; 130(3): 036801, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763405

RESUMEN

Orbital degrees of freedom mediating an interaction between spin and lattice were predicted to raise strong magnetoelectric effect, i.e., to realize an efficient coupling between magnetic and ferroelectric orders. However, the effect of orbital fluctuations has been considered only in a few magnetoelectric materials, as orbital-degeneracy driven Jahn-Teller effect rarely couples to polarization. Here, we explore the spin-lattice coupling in multiferroic Swedenborgites with mixed valence and Jahn-Teller active transition metal ions on a stacked triangular and Kagome lattice using infrared and dielectric spectroscopy. On one hand, in CaBaM_{4}O_{7} (M=Co, Fe), we observe a strong magnetic-order-induced shift in the phonon frequencies and a corresponding large change in the dielectric response. Remarkably, as an unusual manifestation of the spin-phonon coupling, the spin fluctuations reduce the phonon lifetime by one order of magnitude at the magnetic phase transitions. On the other hand, lattice vibrations, dielectric response, and electric polarization show no variation at the Néel temperature of CaBaFe_{2}Co_{2}O_{7}, which is built up by orbital singlet ions. Our results provide a showcase for orbital degrees of freedom enhanced magnetoelectric coupling via the example of Swedenborgites.

5.
Sci Rep ; 12(1): 18111, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302931

RESUMEN

The rapid increase in the number of bacteria that are resistant to many commonly used antimicrobial agents and their global spread have become a major problem worldwide. In particular, for periodontal disease, which is a localized infection, there is a growing need for treatment methods that do not primarily involve antimicrobial agents, and antimicrobial photodynamic therapy (aPDT) is attracting attention. In this study, the bactericidal effects of a mid-infrared free electron laser (MIR-FEL) on E. coli were investigated as a basic study to examine the applicability of MIR-FELs, which can selectively excite molecular vibrations due to their wavelength tunability, to aPDT. The optimal irradiation wavelengths to be examined in this study were determined from the infrared spectrum of the bacteria, which was obtained using Fourier transform infrared spectroscopy. Five irradiation wavelengths (6.62, 6.88, 7.14, 8.09 and 9.26 µm) were selected from the FT-IR spectrum, and we found that the bactericidal effects at a wavelength of 6.62 µm were markedly stronger than those observed at the other wavelengths. At this wavelength corresponding to the Amide II band, the bacterial survival rate decreased significantly as the irradiation time increased. On the contrary, irradiation of a neodymium-doped yttrium aluminum garnet (Nd: YAG) laser at 1.06 µm exhibited no distinct bactericidal effect. No morphological changes were observed after MIR-FEL irradiation, suggesting that a bacterial organelle molecule may be the target of MIR-FEL irradiation, but the exact target was not identified. Furthermore, the temperature change induced in the culture medium by the laser irradiation was ± 1.5 °C at room temperature. These results suggest that the bactericidal effects of MIR-FEL are derived from photochemical reactions involving infrared photons, since E. coli is usually killed by heating it to 75 °C for 1 min or longer.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier , Electrones , Rayos Láser , Antibacterianos/farmacología , Bacterias
6.
Nat Commun ; 9(1): 3032, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072735

RESUMEN

Topological quantum states of matter, characterized by geometrical features of electronic band structures, have been extensively studied. Among them, the topological electronic state with magnetic order remains elusive because of a scarce number of examples. Here we present experimental observations proving that the pyrochlore iridate, when electronically tuned, can be a topological Weyl semimetal as predicted by recent theories. We observe a sizable spontaneous Hall conductivity with minimal magnetization only within a few Kelvin below the all-in all-out magnetic ordering temperature. Our theoretical calculation, which is quantitatively consistent with the observation, suggests that the presence of linearly-dispersing crossing points (Weyl points), acting as a source/sink of a quantized magnetic flux, potentially gives rise to such an enormous effect. The manifestation of the salient Hall response provides one important example of topological states, which promotes a better understanding of Weyl semimetal and indicates the new research direction for the topological-materials design.

7.
Sci Technol Adv Mater ; 19(1): 899-908, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31001365

RESUMEN

We review recent advances in strongly correlated oxides as thermoelectric materials in pursuit of energy harvesting. We discuss two topics: one is the enhancement of the ordinary thermoelectric properties by controlling orbital degrees of freedom and orbital fluctuation not only in bulk but also at the interface of correlated oxides. The other topic is the use of new phenomena driven by spin-orbit coupling (SOC) of materials. In 5d electron oxides, we show some SOC-related transport phenomena, which potentially contribute to energy harvesting. We outline the current status and a future perspective of oxides as thermoelectric materials.

8.
Sci Rep ; 7(1): 5225, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701797

RESUMEN

The development of antibiotics cannot keep up with the speed of resistance acquired by microorganisms. Recently, the development of antimicrobial photodynamic therapy (aPDT) has been a necessary antimicrobial strategy against antibiotic resistance. Among the wide variety of bacteria found in the oral flora, Porphyromonas gingivalis (P. gingivalis) is one of the etiological agents of periodontal disease. aPDT has been studied for periodontal disease, but has risks of cytotoxicity to normal stained tissue. In this study, we performed aPDT using protoporphyrin IX (PpIX), an intracellular pigment of P. gingivalis, without an external photosensitizer. We confirmed singlet oxygen generation by PpIX in a blue-light irradiation intensity-dependent manner. We discovered that blue-light irradiation on P. gingivalis is potentially bactericidal. The sterilization mechanism seems to be oxidative DNA damage in bacterial cells. Although it is said that no resistant bacteria will emerge using aPDT, the conventional method relies on an added photosensitizer dye. PpIX in P. gingivalis is used in energy production, so aPDT applied to PpIX of P. gingivalis should limit the appearance of resistant bacteria. This approach not only has potential as an effective treatment for new periodontal diseases, but also offers potential antibacterial treatment for multiple drug resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Bacteroidaceae/prevención & control , Luz , Enfermedades Periodontales/prevención & control , Fármacos Fotosensibilizantes/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Oxígeno Singlete/química , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/microbiología , Humanos , Viabilidad Microbiana , Enfermedades Periodontales/microbiología , Porphyromonas gingivalis/aislamiento & purificación , Porphyromonas gingivalis/efectos de la radiación , Protoporfirinas/metabolismo
9.
Nat Commun ; 8: 15515, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537276

RESUMEN

The interplay between electron correlation and spin-orbit coupling in solids has been proven to be an abundant gold mine for emergent topological phases. Here we report the results of systematic magnetotransport study on bandwidth-controlled pyrochlore iridates R2Ir2O7 near quantum metal-insulator transition (MIT). The application of a magnetic field along [001] crystallographic direction (H//[001]) significantly decreases resistivity while producing a unique Hall response, which indicates the emergence of the novel semi-metallic state in the course of the magnetic transformation from all-in all-out (AIAO, 4/0) to 2-in 2-out (2/2) spin configuration. For H//[111] that favours 3-in 1-out (3/1) configuration, by contrast, the resistivity exhibits saturation at a relatively high value typical of a semimetal. The observed properties can be identified to reflect the emergence of multiple Weyl semimetal states with varying numbers of Weyl points and line nodes in respective spin configurations. With tuning effective bandwidth, all these states appear to concentrate around the quantum MIT region, which may open a promising venue for topological phenomena and functions.

10.
Sci Adv ; 2(11): e1601378, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27847874

RESUMEN

Ferroelectrics with spontaneous electric polarization play an essential role in today's device engineering, such as capacitors and memories. Their physical properties are further enriched by suppressing the long-range polar order, as exemplified by quantum paraelectrics with giant piezoelectric and dielectric responses at low temperatures. Likewise in metals, a polar lattice distortion has been theoretically predicted to give rise to various unusual physical properties. However, to date, a "ferroelectric"-like transition in metals has seldom been controlled, and hence, its possible impacts on transport phenomena remain unexplored. We report the discovery of anomalous enhancement of thermopower near the critical region between the polar and nonpolar metallic phases in 1T'-Mo1-x Nb x Te2 with a chemically tunable polar transition. It is unveiled from the first-principles calculations and magnetotransport measurements that charge transport with a strongly energy-dependent scattering rate critically evolves toward the boundary to the nonpolar phase, resulting in large cryogenic thermopower. Such a significant influence of the structural instability on transport phenomena might arise from the fluctuating or heterogeneous polar metallic states, which would pave a novel route to improving thermoelectric efficiency.

11.
Science ; 350(6260): 538-41, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26516280

RESUMEN

Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.

12.
Lasers Med Sci ; 29(5): 1701-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24760285

RESUMEN

A mid-infrared free-electron laser (FEL) is operated as a pulsed and linearly polarized laser with tunable wavelengths within infrared region. Although the FEL can ablate soft tissues with minimum collateral damage in surgery, the potential of FEL for dissecting protein aggregates is not fully understood. Protein aggregates such as amyloid fibrils are in some cases involved in serious diseases. In our previous study, we showed that amyloid-like lysozyme fibrils could be disaggregated into the native form with FEL irradiation specifically tuned to the amide I band (1,620 cm(-1)). Here, we show further evidence for the FEL-mediated disaggregation of amyloid-like fibrils using insulin fibrils. Insulin fibrils were prepared in acidic solution and irradiated by the FEL, which was tuned to either 1,620 or 2,000 cm(-1) prior to the experiment. The Fourier transform infrared spectroscopy (FT-IR) spectrum after irradiation with the FEL at 1,620 cm(-1) indicated that the broad peak (1,630-1,660 cm(-1)) became almost a single peak (1,652 cm(-1)), and the ß-sheet content was reduced to 25 from 40% in the fibrils, while that following the irradiation at 2,000 cm(-1) remained at 38%. The Congo Red assay as well as transmission electron microscopy observation confirmed that the number of fibrils was reduced by FEL irradiation at the amide I band. Size-exclusion chromatography analysis indicated that the disaggregated form of fibrils was the monomeric form. These results confirm that FEL irradiation at the amide I band can dissect amyloid-like protein fibrils into the monomeric form in vitro.


Asunto(s)
Amidas , Amiloide/química , Electrones , Rayos Láser , Humanos , Rayos Infrarrojos , Insulina/química , Microscopía Electrónica de Transmisión , Agregado de Proteínas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
13.
Protein J ; 31(8): 710-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23054332

RESUMEN

Aggregation of lysozyme in an acidic solution generates inactive amyloid-like fibrils, with a broad infrared peak appearing at 1,610-1,630 cm(-1), characteristic of a ß-sheet rich structure. We report here that spontaneous refolding of these fibrils in water could be promoted by mid-infrared free-electron laser (mid-IR FEL) irradiation targeting the amide bands. The Fourier transform infrared spectrum of the fibrils reflected a ß-sheet content that was as low as that of the native structure, following FEL irradiation at 1,620 cm(-1) (amide I band); both transmission-electron microscopy imaging and Congo Red assay results also demonstrated a reduced fibril structure, and the enzymatic activity of lysozyme fibrils recovered to 70-90 % of the native form. Both irradiations at 1,535 cm(-1)(amide II band) and 1,240 cm(-1) (amide III band) were also more effective for the refolding of the fibrils than mere heating in the absence of FEL. On the contrary, either irradiation at 1,100 or 2,000 cm(-1) afforded only about 60 % recovery of lysozyme activity. These results indicate that the specific FEL irradiation tuned to amide bands is efficient in refolding of lysozyme fibrils into native form.


Asunto(s)
Amiloide/efectos de la radiación , Rayos Infrarrojos , Muramidasa/efectos de la radiación , Replegamiento Proteico/efectos de la radiación , Amiloide/química , Amiloide/metabolismo , Animales , Pollos , Rojo Congo , Rayos Láser , Muramidasa/química , Muramidasa/metabolismo , Unión Proteica , Conformación Proteica , Análisis Espectral
14.
J Am Chem Soc ; 134(2): 1036-46, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22142304

RESUMEN

Supramolecular ferroelectric cocrystals of phenazine (Phz) with chloranilic acid (H(2)ca), bromanilic acid (H(2)ba), and fluoranilic acid (H(2)fa) have been characterized by the interplay between their structural transformations and solid-state acid-base (proton transfer) reactions. At ambient pressure, the Phz-H(2)ca, Phz-H(2)ba, and their deuterated crystals exhibit incomplete proton displacement, which transforms the neutral molecules into semi-ionic at low temperatures below the Curie point (T(c)(IC) < T < T(c)(I)). For the cocrystal of the less acidic H(2)fa, the ferroelectric phase is induced only by applying hydrostatic pressure above ~0.6 GPa. According to the combined studies of temperature-dependent dielectric permittivity and synchrotron X-ray diffraction, it was proved that the ferroelectric (FE-I) phase is always accompanied at lower temperatures by successive phase transitions to the lattice modulated phases with incommensurate periodicities (IC phase, T(c)(II) < T < T(c)(IC)) and with commensurate (2- or 3-fold) periodicities (FE-II or FE-III phase, T < T(c)(II)). Whereas the ground-state structures at ambient pressure are different from one another among the Phz-H(2)ca (FE-II form), Phz-H(2)ba (FE-III form), and Phz-H(2)fa (paraelectric form), their systematic changes under pressure depict a universal pressure-temperature phase diagram. The possible origins of structural changes are assigned to the valence instability and the frustrated Coulomb interactions that induce the charge disproportionation (coexisting neutral ionic) states with the staging spatial orders.

15.
Nat Prod Res ; 17(5): 337-9, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14526912

RESUMEN

Dimethyl malate (1) and 5-hydroxymethyl furfural (2) were isolated as insecticidal compounds by bioassay-guided fractionation from MeOH extract of the fruits of Cornus officinalis Sieb. et Zucc. Insecticidal activity against larvae of D. melanogaster was demonstrated: 1 and 2 gave the LC50 value of 6.15 and 11.8 micromol/mL of diet concentration, respectively. Acute toxicity against adults of D. melanogaster, 1 and 2 had the insecticidal activity, with the LD50 value of 21.5 and 34.0 microg/adult.


Asunto(s)
Cornus/química , Furaldehído/análogos & derivados , Furaldehído/toxicidad , Maleatos/toxicidad , Animales , Bioensayo , Drosophila melanogaster , Furaldehído/aislamiento & purificación , Maleatos/aislamiento & purificación , Extractos Vegetales/toxicidad , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...