Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(7): 4021-4078, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38518254

RESUMEN

Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.


Asunto(s)
Neoplasias , Humanos , Fluorescencia , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Colorantes Fluorescentes , Sondas Moleculares , Imagen Óptica , Biomarcadores
2.
J Am Chem Soc ; 146(1): 521-531, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38110248

RESUMEN

Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.


Asunto(s)
Carboxipeptidasas , ProTides , Masculino , Humanos , Fluorescencia , Carboxipeptidasas/metabolismo , Hidrolasas , Aminoácidos , Colorantes Fluorescentes/química
3.
Liver Cancer ; 12(6): 590-602, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058421

RESUMEN

Introduction: Complete resection is the only possible treatment for cholangiocarcinoma in the extrahepatic biliary tree (eCCA), although current imaging modalities are limited in their ability to accurately diagnose longitudinal spread. We aimed to develop fluorescence imaging techniques for real-time identification of eCCA using an enzyme-activatable probe, which emits fluorescence immediately after activation by a cancer-specific enzyme. Methods: Using lysates and small tissue fragments collected from surgically resected specimens, we selected the most specific probe for eCCA from among 800 enzyme-activatable probes. The selected probe was directly sprayed onto resected specimens and fluorescence images were acquired; these images were evaluated for diagnostic accuracy. We also comprehensively searched for enzymes that could activate the probe, then compared their expression levels in cancer and non-cancer tissues. Results: Analyses of 19 samples (four cancer lysates, seven non-cancer lysates, and eight bile samples) and 54 tissue fragments (13 cancer tissues and 41 non-cancer tissues) revealed that PM-2MeSiR was the most specific fluorophore for eCCA. Fluorescence images of 7 patients were obtained; these images enabled rapid identification of cancerous regions, which closely matched histopathology findings in 4 patients. Puromycin-sensitive aminopeptidase was identified as the enzyme that might activate the probe, and its expression was upregulated in eCCA. Conclusion: Fluorescence imaging with PM-2MeSiR, which may be activated by puromycin-sensitive aminopeptidase, yielded generally high accuracy. This technique may be useful for real-time identification of the spread of eCCA during surgery and endoscopic examinations.

4.
Sci Rep ; 13(1): 3757, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882498

RESUMEN

In recent years, thoracoscopic and robotic surgical procedures have increasingly replaced median sternotomy for thymoma and thymic carcinoma. In cases of partial thymectomy, the prognosis is greatly improved by ensuring a sufficient margin from the tumor, and therefore intraoperative fluorescent imaging of the tumor is especially valuable in thoracoscopic and robotic surgery, where tactile information is not available. γ-Glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) has been applied for fluorescence imaging of some types of tumors in the resected tissues, and here we aimed to examine its validity for the imaging of thymoma and thymic carcinoma. 22 patients with thymoma or thymic carcinoma who underwent surgery between February 2013 and January 2021 were included in the study. Ex vivo imaging of specimens was performed, and the sensitivity and specificity of gGlu-HMRG were 77.3% and 100%, respectively. Immunohistochemistry (IHC) staining was performed to confirm expression of gGlu-HMRG's target enzyme, γ-glutamyltranspeptidase (GGT). IHC revealed high GGT expression in thymoma and thymic carcinoma in contrast to absent or low expression in normal thymic parenchyma and fat tissue. These results suggest the utility of gGlu-HMRG as a fluorescence probe for intraoperative visualization of thymomas and thymic carcinomas.


Asunto(s)
Timoma , Neoplasias del Timo , Humanos , Timoma/diagnóstico por imagen , Neoplasias del Timo/diagnóstico por imagen , Neoplasias del Timo/cirugía , gamma-Glutamiltransferasa , Imagen Óptica , Colorantes Fluorescentes
5.
Sci Rep ; 12(1): 9100, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650221

RESUMEN

Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Pulmonares , Alanina , Aminopeptidasas , Dipeptidil Peptidasa 4/metabolismo , Colorantes Fluorescentes/química , Glutamina , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Rodaminas/química , Silicio
6.
Chem Sci ; 13(16): 4474-4481, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35656140

RESUMEN

Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases.

7.
Methods Mol Biol ; 2274: 193-206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34050473

RESUMEN

Fluorescence (FL)-guided detection of cancer is one of the most promising approaches to achieve intraoperative assessment of surgical margins. Enzymes, such as aminopeptidase, carboxypeptidase, and glycosidase, whose activities are increased in cancer, have attracted great interest as imaging targets for rapid and sensitive visualization of cancerous tissues with fluorescent probes. Activatable probes, which are initially nonfluorescent but become strongly fluorescent upon rapid one-step cleavage of their substrate moiety by the target enzyme, are especially promising for practical clinical application during surgical or endoscopic procedures due to the highly amplified FL change generated by enzyme-catalyzed turnover at lesion sites. Here, we describe robust protocols for using activatable fluorescent probes targeting cancer-associated enzyme activities to visualize cultured cancer cells, metastatic cancer in a mouse model, and cancerous lesions in surgical specimens from patients.


Asunto(s)
Aminopeptidasas/metabolismo , Carboxipeptidasas/metabolismo , Diagnóstico por Imagen/métodos , Colorantes Fluorescentes/química , Neoplasias/patología , Neoplasias Peritoneales/secundario , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Neoplasias/diagnóstico por imagen , Neoplasias/enzimología , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/enzimología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
ACS Cent Sci ; 6(12): 2217-2227, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33376783

RESUMEN

Accurate detection of breast tumors and discrimination of tumor from normal tissues during breast-conserving surgery are essential to reduce the risk of misdiagnosis or recurrence. However, existing probes show substantial background signals in normal breast tissues. In this study, we focus on glycosidase activities in breast tumors. We synthesized a series of 12 fluorescent probes and performed imaging-based evaluation on surgically resected human breast specimens. Among them, the α-mannosidase-reactive fluorescent probe HMRef-αMan detected breast cancer with 90% sensitivity and 100% specificity. We identified α-mannosidase 2C1 as the target enzyme and confirmed its overexpression in various breast tumors. We found that fibroadenoma, the most common benign breast lesion in young woman, tends to have higher α-mannosidase 2C1 activity than malignant cancer. Combined application of green-emitting HMRef-αMan and a red-emitting γ-glutamyltranspeptidase probe enabled efficient dual-color, dual-target optical discrimination of malignant and benign tumors.

9.
Bioconjug Chem ; 30(4): 1055-1060, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30920803

RESUMEN

We have developed an activatable red fluorescence probe for dipeptidylpeptidase-IV (DPP-IV) by precisely controlling the photoinduced electron transfer (PeT) process of a red fluorescent scaffold, SiR600. The developed probe exhibited an extremely low background signal and showed significant fluorescence activation upon reaction with DPP-IV, enabling sensitive detection of esophageal cancer in clinical specimens from cancer patients.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Neoplasias Esofágicas/diagnóstico , Colorantes Fluorescentes/química , Dipeptidil Peptidasa 4/química , Neoplasias Esofágicas/enzimología , Humanos , Sensibilidad y Especificidad , Espectrometría de Fluorescencia
10.
Molecules ; 23(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534528

RESUMEN

The construction of supramolecular recognition systems based on specific host-guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD-Cu2+ complexes (Cu·1α, Cu·1ß, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1ß selectively recognized ATP over other organic and inorganic phosphates, and that ß-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host-guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu2+-DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water.


Asunto(s)
Aminas/química , Cobre/química , Ciclodextrinas/síntesis química , Ácidos Picolínicos/química , Adenosina Trifosfato/metabolismo , Ciclodextrinas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular
12.
J Org Chem ; 82(2): 976-981, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27997800

RESUMEN

In this study, we have developed a rational design strategy to obtain highly selective supramolecular recognition systems of cyclodextrins (CyDs) on the basis of the lock and key principle. We designed and synthesized dipicolylamine (dpa)-modified γ-CyD-Cu2+ complexes possessing an azobenzene unit (Cu·1-γ-CyD) and examined how they recognized phosphoric acid derivatives in water. The results revealed that Cu·1-γ-CyD recognized ATP with high selectivity over other phosphoric acid derivatives. The significant blue shift in the UV-vis spectra and 1H NMR analysis suggested that the selective ATP recognition was based on the multipoint interactions between the adenine moiety of ATP and both the CyD cavity and the azobenzene unit in addition to the recognition of phosphoric moieties by the Cu-dpa complex site. Our unique receptor made it capable of distinguishing ATP from AMP and ADP, revealing the discrimination of even a length of one phosphoric group. This study demonstrates that, compared to conventional recognition systems of CyDs, this multipoint recognition system confers a higher degree of selectivity for certain organic molecules, such as ATP, over their similar derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...