Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Respir Med Case Rep ; 50: 102070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903654

RESUMEN

There have rarely been reports on the neoplastic transformation in other organs during immunotherapy for lung cancer. We report the case of a 71-year-old man who was diagnosed with advanced pulmonary adenocarcinoma and a thyroid tumor. The patient responded to chemoradiotherapy but developed a recurrence of pulmonary metastasis. Therefore, nivolumab was started, and a complete response for pulmonary metastasis was achieved. After 32 nivolumab cycles, he experienced neck pain, and the thyroid tumor grew rapidly. Histological examination revealed anaplastic thyroid carcinoma. Although rare, immunotherapy for lung cancer has the potential to induce neoplastic transformation in other organs.

2.
Respirol Case Rep ; 12(6): e01404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887429

RESUMEN

Immunoglobulin G4 (IgG4)-related disease is a chronic inflammatory condition often characterized by exudative pleural effusions. However, transudative pleural effusions, like in the presented case of an 80-year-old man with multiple comorbidities, are less common but possible. Despite initial treatment with diuretics, the effusion persisted, prompting further investigation. Medical thoracoscopy revealed lymphatic follicle hyperplasia and an abundance of IgG4-positive plasmacytoid cells, confirming IgG4-related pleuritis. This case underscores the importance of considering inflammatory etiologies, such as IgG4-related disease, when faced with unresponsive transudative pleural effusions. Thoracoscopy serves as a valuable diagnostic tool in such scenarios, allowing for precise diagnosis and appropriate management.

3.
Physiol Rep ; 12(7): e15991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605421

RESUMEN

Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.


Asunto(s)
Células Madre Mesenquimatosas , Entrenamiento de Fuerza , Animales , Masculino , Ratones , Actividades Cotidianas , Inyecciones Intramusculares , Células Madre Mesenquimatosas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
4.
J Med Chem ; 67(6): 4442-4462, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502780

RESUMEN

Relaxin H2 is a clinically relevant peptide agonist for relaxin family peptide receptor 1 (RXFP1), but a combination of this hormone's short plasma half-life and the need for injectable delivery limits its therapeutic potential. We sought to overcome these limitations through the development of a potent small molecule (SM) RXFP1 agonist. Although two large SM HTS campaigns failed in identifying suitable hit series, we uncovered novel chemical space starting from the only known SM RXFP1 agonist series, represented by ML290. Following a design-make-test-analyze strategy based on improving early dose to man ranking, we discovered compound 42 (AZ7976), a highly selective RXFP1 agonist with sub-nanomolar potency. We used AZ7976, its 10 000-fold less potent enantiomer 43 and recombinant relaxin H2 to evaluate in vivo pharmacology and demonstrate that AZ7976-mediated heart rate increase in rats was a result of RXFP1 agonism. As a result, AZ7976 was selected as lead for continued optimization.


Asunto(s)
Relaxina , Humanos , Masculino , Ratas , Animales , Relaxina/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas
5.
J Med Chem ; 67(6): 4419-4441, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502782

RESUMEN

Optimization of the highly potent and selective, yet metabolically unstable and poorly soluble hRXFP1 agonist AZ7976 led to the identification of the clinical candidate, AZD5462. Assessment of RXFP1-dependent cell signaling demonstrated that AZD5462 activates a highly similar panel of downstream pathways as relaxin H2 but does not modulate relaxin H2-mediated cAMP second messenger responsiveness. The therapeutic potential of AZD5462 was assessed in a translatable cynomolgus monkey heart failure model. Following 8 weeks of treatment with AZD5462, robust improvements in functional cardiac parameters including LVEF were observed at weeks 9, 13, and 17 without changes in heart rate or mean arterial blood pressure. AZD5462 was well tolerated in both rat and cynomolgus monkey and has successfully completed phase I studies in healthy volunteers. In summary, AZD5462 is a small molecule pharmacological mimetic of relaxin H2 signaling at RXFP1 and holds promise as a potential therapeutic approach to treat heart failure patients.


Asunto(s)
Insuficiencia Cardíaca , Relaxina , Humanos , Ratas , Animales , Relaxina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Macaca fascicularis/metabolismo , Receptores de Péptidos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico
6.
J Neuroimmunol ; 388: 578297, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306928

RESUMEN

The influx of pathogenic aquaporin-4 antibodies (AQP4-Abs) across the blood-spinal cord barrier (BSCB) is crucial for the development and exacerbation of neuromyelitis optica (NMO). We examined whether prophylactic intravenous administration of anti-repulsive guidance molecule-a antibodies (RGMa-Abs) has disease-modifying effects on BSCB dysfunction using an NMO model elicited by peripheral administration of AQP4-Abs to rats. RGMa-Ab treatment attenuated the acute exacerbation of perivascular astrocytopathy in the spinal cord and clinical symptoms, which were highly correlated with neurofilament light chain levels in both the cerebrospinal fluid (CSF) and serum. Additionally, RGMa-Ab treatment suppressed the expression of proinflammatory cytokines/chemokines and the infiltration of inflammatory cells into the spinal cord. CSF analysis of NMO rats revealed that RGMa-Ab treatment improved the CSF/serum albumin ratio and suppressed AQP4-Abs influx. RGMa inhibition using RGMa-Abs is suggested as a potential therapeutic option for BSCB dysfunction associated with NMO.


Asunto(s)
Neuromielitis Óptica , Animales , Ratas , Acuaporina 4 , Autoanticuerpos/metabolismo , Médula Espinal/patología
7.
Sci Rep ; 14(1): 4185, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379013

RESUMEN

Dry eye syndrome (DES) is a complex ocular condition characterized by an unstable tear film and inadequate tear production, leading to tissue damage. Despite its common occurrence, there is currently no comprehensive in vitro model that accurately reproduce the cellular characteristics of DES. Here we modified a corneal epithelium-on-a-chip (CEpOC) model to recapitulate DES by subjecting HCE-T human corneal epithelial cells to an air-liquid (AL) interface stimulus. We then assessed the effects of AL stimulation both in the presence and absence of diclofenac (DCF), non-steroidal anti-inflammatory drug. Transcriptomic analysis revealed distinct gene expression changes in response to AL and AL_DCF, affecting pathways related to development, epithelial structure, inflammation, and extracellular matrix remodeling. Both treatments upregulated PIEZO2, linked to corneal damage signaling, while downregulating OCLN, involved in cell-cell junctions. They increased the expression of inflammatory genes (e.g., IL-6) and reduced mucin production genes (e.g., MUC16), reflecting dry eye characteristics. Metabolomic analysis showed increased secretion of metabolites associated with cell damage and inflammation (e.g., methyl-2-oxovaleric acid, 3-methyl-2-oxobutanoic acid, lauroyl-carnitine) in response to AL and even more with AL_DCF, indicating a shift in cellular metabolism. This study showcases the potential use of AL stimulus within the CEpOC to induce cellular characteristics relevant to DES.


Asunto(s)
Síndromes de Ojo Seco , Epitelio Corneal , Humanos , Epitelio Corneal/metabolismo , Síndromes de Ojo Seco/metabolismo , Lágrimas/metabolismo , Inflamación/metabolismo , Diclofenaco/farmacología , Diclofenaco/metabolismo , Dispositivos Laboratorio en un Chip
8.
Exp Eye Res ; 237: 109697, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890755

RESUMEN

The human corneal epithelial barrier plays a crucial role in drug testing studies, including drug absorption, distribution, metabolism, and excretion (ADME), as well as toxicity testing during the preclinical stages of drug development. However, despite the valuable insights gained from animal and current in vitro models, there remains a significant discrepancy between preclinical drug predictions and actual clinical outcomes. Additionally, there is a growing emphasis on adhering to the 3R principles (refine, reduce, replace) to minimize the use of animals in testing. To tackle these challenges, there is a rising demand for alternative in vitro models that closely mimic the human corneal epithelium. Recently, remarkable advancements have been made in two key areas: microphysiological systems (MPS) or organs-on-chips (OoCs), and stem cell-derived organoids. These cutting-edge platforms integrate four major disciplines: stem cells, microfluidics, bioprinting, and biosensing technologies. This integration holds great promise in developing powerful and biomimetic models of the human cornea.


Asunto(s)
Epitelio Corneal , Dispositivos Laboratorio en un Chip , Animales , Humanos , Desarrollo de Medicamentos , Córnea , Microfluídica
9.
Respirol Case Rep ; 11(9): e01196, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37534047

RESUMEN

p16 has been used as a surrogate marker for human papillomavirus (HPV)-related tumours. However, it remains unclear whether p16 is also a potential marker for pulmonary tumours. Herein, we report the case of an 80-year-old woman with a history of papillary squamous cell carcinoma of the uterine cervix, presenting with a left pulmonary tumour. A bronchoscopic biopsy revealed squamous cell carcinoma with a papillary pattern, which did not rule out pulmonary metastasis from the cervix. Immunohistochemical staining revealed that the cervical tumour was positive for p16, whereas the pulmonary tumour was negative and was effectively diagnosed as primary pulmonary carcinoma.

10.
Sci Rep ; 13(1): 11519, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460617

RESUMEN

Organs-on-chips using cultured cells have been developed and applied for evaluating in vitro biological phenomena. We previously reported an openable artificial intestinal tract system, as an in vitro model of the small intestine, for in vitro drug screening. The intestinal tract device could be transformed using an integrated artificial muscle actuator. An initial flat state was suitable for cell culture, and the transformed tubular structure was used as a fluidic channel for perfusion tests. The previously developed intestinal tract system could be used to evaluate drug absorption by cells through perfusion testing. This study presents an improved artificial intestinal tract system for analysis of drug permeation, in addition to absorption. Permeable filters were integrated into the intestinal tract device. Integration of additional filters into the design of the existing artificial muscle actuator was accomplished by considering device performance and available filter locations. Filter permeability was evaluated by perfusion testing. MDCK-II cells were cultured on the device and visually and electrically evaluated. The openable device, equipped with new functions for further pharmacokinetic analysis, could perform and evaluate drug disposition using cultured cells. We anticipate that the improved, openable organ-on-a-chip device system will contribute to advances in in vitro drug screening technology.


Asunto(s)
Tracto Gastrointestinal , Intestinos , Animales , Perros , Técnicas de Cultivo de Célula , Células de Riñón Canino Madin Darby , Administración Oral , Permeabilidad , Absorción Intestinal/fisiología
11.
Sci Rep ; 13(1): 12053, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491450

RESUMEN

Prader-Willi syndrome (PWS), which is a complex epigenetic disorder caused by the deficiency of paternally expressed genes in chromosome 15q11-q13, is associated with several psychiatric dimensions, including autism spectrum disorder. We have previously reported that iPS cells derived from PWS patients exhibited aberrant differentiation and transcriptomic dysregulation in differentiated neural stem cells (NSCs) and neurons. Here, we identified SLITRK1 as a downregulated gene in NSCs differentiated from PWS patient iPS cells by RNA sequencing analysis. Because SLITRK1 is involved in synaptogenesis, we focused on the synaptic formation and function of neurons differentiated from PWS patient iPS cells and NDN or MAGEL2 single gene defect mutant iPS cells. Although ßIII tubulin expression levels in all the neurons were comparable to the level of differentiation in the control, pre- and postsynaptic markers were significantly lower in PWS and mutant neurons than in control neurons. PSD-95 puncta along ßIII tubulin neurites were also decreased. Membrane potential responses were measured while exposed to high K+ stimulation. The neuronal excitabilities in PWS and mutant neurons showed significantly lower intensity than that of control neurons. These functional defects in PWS neurons may reflect phenotypes of neurodevelopmental disorders in PWS.


Asunto(s)
Trastorno del Espectro Autista , Células-Madre Neurales , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Tubulina (Proteína)/genética , Neuronas , Cromosomas Humanos Par 15 , Proteínas/genética
12.
Metabolites ; 13(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37367864

RESUMEN

Human induced pluripotent stem cells (hiPSCs) possess immense potential as a valuable source for the generation of a wide variety of human cells, yet monitoring the early cell differentiation towards a specific lineage remains challenging. In this study, we employed a non-targeted metabolomic analysis technique to analyze the extracellular metabolites present in samples as small as one microliter. The hiPSCs were subjected to differentiation by initiating culture under the basal medium E6 in combination with chemical inhibitors that have been previously reported to direct differentiation towards the ectodermal lineage such as Wnt/ß-catenin and TGF-ß kinase/activin receptor, alone or in combination with bFGF, and the inhibition of glycogen kinase 3 (GSK-3), which is commonly used for the diversion of hiPSCs towards mesodermal lineage. At 0 h and 48 h, 117 metabolites were identified, including biologically relevant metabolites such as lactic acid, pyruvic acid, and amino acids. By determining the expression of the pluripotency marker OCT3/4, we were able to correlate the differentiation status of cells with the shifted metabolites. The group of cells undergoing ectodermal differentiation showed a greater reduction in OCT3/4 expression. Moreover, metabolites such as pyruvic acid and kynurenine showed dramatic change under ectodermal differentiation conditions where pyruvic acid consumption increased 1-2-fold, while kynurenine secretion decreased 2-fold. Further metabolite analysis uncovered a group of metabolites specifically associated with ectodermal lineage, highlighting the potential of our findings to determine the characteristics of hiPSCs during cell differentiation, particularly under ectodermal lineage conditions.

13.
Biochem Biophys Res Commun ; 664: 94-99, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141642

RESUMEN

In nonclinical studies, models that can predict the metabolism of drug candidates by cytochrome P450 (CYP), including Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) are helpful. CYP3A4-overexpressing human cells have been used universally to evaluate whether CYP3A4 metabolizes drug-candidate compounds. However, CYP3A4-overexpressing human cell lines are problematic because their activity levels are lower than that of in vivo human CYP3A4. Heme plays a paramount role in CYP activity. The rate-limiting step in heme biosynthesis is the generation of 5-aminolevulinic acid (5-ALA). In this study, we examined whether treatment with 5-ALA to CYP3A4-POR-UGT1A1-CES2 knockin and CES1 knockout (genome-edited) Caco-2 cells enhances CYP3A4 activity. A 7-day 5-ALA treatment increased intracellular heme levels in genome-edited Caco-2 cells without cytotoxicity. Moreover, consistent with the increase in intracellular heme content, 5-ALA treatment increased CYP3A4 activity in genome-edited Caco-2 cells. The results of this research are expected to be applied to pharmacokinetic studies using CYP-overexpressing human cells containing CYP3A4.


Asunto(s)
Ácido Aminolevulínico , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células CACO-2 , Ácido Aminolevulínico/farmacología , Hemo , Sistema Enzimático del Citocromo P-450/metabolismo
14.
Drug Metab Pharmacokinet ; 50: 100497, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037169

RESUMEN

Caco-2 cells are widely used as an in vitro intestinal model. However, the expression levels of the drug-metabolizing enzymes CYP3A4 and UGT1A1 are lower in these cells than in intestinal cells. Furthermore, the majority of prodrugs in use today are ester-containing, and carboxylesterase (CES) 1 and CES2 are among the enzymes that process the prodrugs into drugs. In the human small intestine, CES1 is hardly expressed while CES2 is highly expressed, but the CES expression pattern in Caco-2 cells is the opposite. In this study, we generated CYP3A4-POR-UGT1A1-CES2 knock-in (KI) and CES1 knock-out (KO) Caco-2 (genome-edited Caco-2) cells using a PITCh system. Genome-edited Caco-2 cells were shown to express functional CYP3A4, POR, UGT1A1 and CES2 while the expression of the CES1 protein was completely knocked out. We performed transport assays using temocapril. The Papp value of temocapril in genome-edited Caco-2 cells was higher than that in WT Caco-2 cells. Interestingly, the amount of temocaprilat on the apical side in genome-edited Caco-2 cells was lower than that in WT Caco-2 cells. These results suggest that genome-edited Caco-2 cells are more suitable than WT Caco-2 cells as a model for predicting intestinal drug absorption and metabolism.


Asunto(s)
Carboxilesterasa , Profármacos , Humanos , Células CACO-2 , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Citocromo P-450 CYP3A/genética , Profármacos/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674942

RESUMEN

Sexual dysfunction can be caused by impaired neurotransmission from the peripheral to the central nervous system. Therefore, it is important to evaluate the input of sensory information from the peripheral genital area and investigate the control mechanisms in the spinal cord to clarify the pathological basis of sensory abnormalities in the genital area. However, an in vivo evaluation system for the spinal cord-penile neurotransmission mechanism has not yet been developed. Here, urethane-anesthetized rats were used to evaluate neuronal firing induced by innocuous or nociceptive stimulation of the penis using extracellular recording or patch-clamp techniques in the lumbosacral spinal dorsal horn and electrophysiological evaluation in the peripheral pelvic nerves. As a result, innocuous and nociceptive stimuli-evoked neuronal firing was successfully recorded in the deep and superficial spinal dorsal horns, respectively. The innocuous stimuli-evoked nerve firing was also recorded in the pelvic nerve. These firings were suppressed by lidocaine. To the best of our knowledge, this is the first report of a successful quantitative evaluation of penile stimuli-evoked neuronal firing. This method is not only useful for analyzing the pathological basis of spinal cord-penile neurotransmission in sexual dysfunction but also provides a useful evaluation system in the search for new treatments.


Asunto(s)
Médula Espinal , Transmisión Sináptica , Masculino , Ratas , Animales , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Asta Dorsal de la Médula Espinal , Neuronas , Lidocaína , Pene
16.
Pharm Res ; 40(2): 359-373, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35169960

RESUMEN

PURPOSE: In drug discovery, rats are widely used for pharmacological and toxicological studies. We previously reported that a mechanism-based oral absorption model, the gastrointestinal unified theoretical framework (GUT framework), can appropriately predict the fraction of a dose absorbed (Fa) in humans and dogs. However, there are large species differences between humans and rats. The purpose of the present study was to evaluate the predictability of the GUT framework for rat Fa. METHOD: The Fa values of 20 model drugs (a total of 39 Fa data) were predicted in a bottom-up manner. Based on the literature survey, the bile acid concentration (Cbile) and the intestinal fluid volume were set to 15 mM and 4 mL/kg, respectively, five and two times higher than in humans. LogP, pKa, molecular weight, intrinsic solubility, bile micelle partition coefficients, and Caco-2 permeability were used as input data. RESULTS: The Fa values were appropriately predicted for highly soluble drugs (absolute average fold error (AAFE) = 1.65, 18 Fa data) and poorly soluble drugs (AAFE = 1.57, 21 Fa data). When the species difference in Cbile was ignored, Fa was over- and under-predicted for permeability and solubility limited cases, respectively. High Cbile in rats reduces the free fraction of drug molecules available for epithelial membrane permeation while increasing the solubility of poorly soluble drugs. CONCLUSION: The Fa values in rats were appropriately predicted by the GUT framework. This result would be of great help for a better understanding of species differences and model-informed preclinical formulation development.


Asunto(s)
Bilis , Absorción Intestinal , Humanos , Ratas , Animales , Perros , Administración Oral , Células CACO-2 , Descubrimiento de Drogas , Solubilidad , Permeabilidad
17.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559158

RESUMEN

Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid-liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.

18.
Respir Med Case Rep ; 40: 101779, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386284

RESUMEN

Spontaneous hemothorax is less common. We report the case of an 83-year-old woman with spontaneous hemothorax caused by lung cancer with nontuberculous mycobacteriosis. She presented with chest pain and hemoptysis. Computed tomography revealed a tumor in the right middle lobe with middle syndrome and pleural effusion. Hemothorax was confirmed, and the right middle lobe was resected to control bleeding. The lung tumor invaded the mediastinal tissue, and tumor rupture was observed. Histological examination revealed pulmonary spindle cell carcinoma and epithelioid granulomas with caseous necrosis. Rapid tumor growth and mediastinal invasion could have led to intratumoral hemorrhage and tumor rupture.

19.
Biol Pharm Bull ; 45(7): 962-967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786604

RESUMEN

Sarcopenia is not only a major cause of disability but also a risk factor for obesity and diabetes in elderly persons. Exercise is an effective method for improving the sarcopenic condition by inducing the secretion of interleukin (IL)-6, which has the capacities to both promote muscle hypertrophy and regulate lipid metabolism and glucose homeostasis, by skeletal muscle. We previously showed that mesenchymal stem cells (MSCs) promote IL-6 secretion by lipopolysaccharide-stimulated C2C12 mouse skeletal muscle myotubes via paracrine mechanisms. Therefore, in this study, we investigated the effect of paracrine actions of MSCs on IL-6 and proinflammatory cytokine expression in contractile C2C12 myotubes by applying electrical stimulation. IL-6 secretion by C2C12 myotubes was increased by electrical stimulation, and a more significant increase in IL-6 secretion was observed in electrically stimulated C2C12 myotubes cultured in conditioned medium from MSCs. The activation of nuclear factor-κB in C2C12 myotubes was also promoted by the combination of conditioned medium from MSCs and electrical stimulation. Moreover, the increases in tumor necrosis factor-α and IL-1ß mRNA expression in C2C12 myotubes induced by electrical stimulation were suppressed by culture in conditioned medium from MSCs. The present findings suggest that MSCs transplantation or injection of their extracellular vesicles improve the therapeutic effect of exercise against sarcopenia without exacerbating inflammation.


Asunto(s)
Células Madre Mesenquimatosas , Sarcopenia , Animales , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Expresión Génica , Interleucina-6/genética , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Fibras Musculares Esqueléticas , Sarcopenia/metabolismo
20.
Cells ; 11(10)2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35626714

RESUMEN

HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4-POR-UGT1A1-CYP1A2-CYP2C19-CYP2C9-CYP2D6 (CYPs-UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs-UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs-UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs-UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs-UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs-UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs-UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Descubrimiento de Drogas , Células Hep G2 , Hepatocitos/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...