Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Commun Biol ; 7(1): 514, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710749

RESUMEN

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Asunto(s)
Lesión Pulmonar Aguda , Anexina A1 , Células Epiteliales , Vesículas Extracelulares , Receptores de Formil Péptido , Receptores de Lipoxina , Transducción de Señal , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Anexina A1/metabolismo , Anexina A1/genética , Animales , Ratones , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Células Epiteliales/metabolismo , Bronquios/metabolismo , Bronquios/citología , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Citocinas/metabolismo , Células THP-1
2.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464328

RESUMEN

Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.

3.
Inflamm Regen ; 43(1): 45, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735707

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease with a poor prognosis. Despite extensive research, the cause of IPF remains largely unknown and treatment strategies are limited. Proposed mechanisms of the pathogenesis of IPF are a combination of excessive accumulation of the extracellular matrix and dysfunctional lung tissue regeneration. Epithelial cell dysfunction, in addition to fibroblast activation, is considered a key process in the progression of IPF. Epithelial cells normally maintain homeostasis of the lung tissue through regulated proliferation, differentiation, cell death, and cellular senescence. However, various stresses can cause repetitive damage to lung epithelial cells, leading to dysfunctional regeneration and acquisition of profibrotic functions. The Hippo pathway is a central signaling pathway that maintains tissue homeostasis and plays an essential role in fundamental biological processes. Dysregulation of the Hippo pathway has been implicated in various diseases, including IPF. However, the role of the Hippo pathway in the pathogenesis of IPF remains unclear, particularly given the pathway's opposing effects on the 2 key pathogenic mechanisms of IPF: epithelial cell dysfunction and fibroblast activation. A deeper understanding of the relationship between the Hippo pathway and the pathogenesis of IPF will pave the way for novel Hippo-targeted therapies.

4.
Thorac Cancer ; 14(29): 2909-2923, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37614219

RESUMEN

BACKGROUND: Risk factors for predicting pneumonitis during durvalumab consolidation after chemoradiotherapy (CRT) in locally advanced non-small cell lung cancer (LA-NSCLC) are still lacking. Extracellular vesicles (EVs) play a crucial role in intercellular communication and are potential diagnostic tools for various diseases. METHODS: We retrospectively collected predurvalumab treatment serum samples from patients treated with durvalumab for LA-NSCLC, isolated EVs using anti-CD9 and anti-CD63 antibodies, and performed proteomic analyses. We examined EV proteins that could predict the development of symptomatic pneumonitis (SP) during durvalumab treatment. Potential EV-protein biomarkers were validated in an independent cohort. RESULTS: In the discovery cohort, 73 patients were included, 49 with asymptomatic pneumonitis (AP) and 24 with SP. Of the 5797 proteins detected in circulating EVs, 33 were significantly elevated (fold change [FC] > 1.5, p < 0.05) in the SP group, indicating enrichment of the nuclear factor kappa B (NF-κB) pathway. Patients with high levels of EV-RELA, an NF-κB subunit, had a higher incidence of SP than those with low levels of EV-RELA (53.8% vs. 13.4%, p = 0.0017). In the receiver operating characteristic analysis, EV-RELA demonstrated a higher area under the curve (AUC) than lung V20 (0.76 vs. 0.62) and was identified as an independent risk factor in the multivariate logistic regression analysis (p = 0.008, odds ratio 7.72). Moreover, high EV-RELA was also a predictor of SP in the validation cohort comprising 43 patients (AUC of 0.80). CONCLUSIONS: Circulating EV-RELA may be a predictive marker for symptomatic pneumonitis in patients with LA-NSCLC treated with durvalumab.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neumonía , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Quimioterapia de Consolidación , Estudios Retrospectivos , FN-kappa B , Proteómica , Neumonía/inducido químicamente , Quimioradioterapia/efectos adversos
5.
Am J Respir Cell Mol Biol ; 69(1): 34-44, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848313

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease associated with increased lung cancer risk. Although previous studies have shown that IPF worsens the survival of patients with lung cancer, whether IPF independently affects cancer malignancy and prognosis remains inconclusive. Extracellular vesicles (EVs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication in lung homeostasis and pathogenesis. EV cargo-mediated fibroblast-tumor cell communication might participate in the development and progression of lung cancer by modulating various signaling pathways. In this study, we examined the impact of lung fibroblast (LF)-derived EVs on non-small cell lung cancer (NSCLC) malignancy in the IPF microenvironment. Here, we showed that LFs derived from patients with IPF have phenotypes of myofibroblast differentiation and cellular senescence. Furthermore, we found that IPF LF-derived EVs have markedly altered microRNA compositions and exert proproliferative functions on NSCLC cells. Mechanistically, the phenotype was attributed mainly to the enrichment of miR-19a in IPF LF-derived EVs. As a downstream signaling pathway, mir-19a in IPF LF-derived EVs regulates ZMYND11-mediated c-Myc activation in NSCLC, potentially contributing to the poor prognosis of patients with NSCLC with IPF. Our discoveries provide novel mechanistic insights for understanding lung cancer progression in the IPF microenvironment. Accordingly, blocking the secretion of IPF LF-derived EV miR-19a and their signaling pathways is a potential therapeutic strategy for managing IPF and lung cancer progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/metabolismo
6.
Lung Cancer ; 173: 107-115, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198243

RESUMEN

Immune checkpoint inhibitors (ICIs) have significantly improved the survival of advanced non-small cell lung cancer (NSCLC). Detecting NSCLC patients with exceptional response to ICIs is necessary to improve the treatment. This case control study profiled circulating microRNA expressions of 213 NSCLC patients treated with nivolumab monotherapy to identify patients with exceptional response. Based on the response and progression-free survival, patients were divided into 3 groups: Exceptional-responder (n = 27), Resistance (n = 161), and Others (n = 25). Resistance group was further randomly partitioned into six non-overlapping sets (n = 26 or 27), while each partition was combined with Exceptional-responder and Others to make balanced datasets. We built machine learning models optimized for identifying Exceptional-responder via 3-group classification and constructed a panel of 45 microRNAs and 3 fields of clinical information. Machine learning models based on the selected panel achieved 0.81-0.89 (median 0.85) sensitivity and 0.52-0.71 (median 0.59) precision for Exceptional-responder in 3-group classification with 5-fold cross validation in all six datasets constructed, while conventional method relying on tumor PD-L1 immunohistochemistry achieved 0.44-0.44 sensitivity and 0.55-0.67 (median 0.62) precision. This study demonstrated the machine learning models achieved much higher sensitivity and accuracy in identifying Exceptional-responder to nivolumab monotherapy when comparing to conventional method only using companion PD-L1 testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , MicroARN Circulante , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Nivolumab/uso terapéutico , Antígeno B7-H1/metabolismo , MicroARN Circulante/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico , Estudios de Casos y Controles , Aprendizaje Automático
7.
Am J Respir Cell Mol Biol ; 67(6): 708-719, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108172

RESUMEN

Phenotypic alterations in the lung epithelium have been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis, but the precise mechanisms orchestrating this persistent inflammatory process remain unknown because of the complexity of lung parenchymal and mesenchymal architecture. To identify cell type-specific mechanisms and cell-cell interactions among the multiple lung resident cell types and inflammatory cells that contribute to COPD progression, we profiled 57,918 cells from lungs of patients with COPD, smokers without COPD, and never-smokers using single-cell RNA sequencing technology. We predicted pseudotime of cell differentiation and cell-to-cell interaction networks in COPD. Although epithelial components in never-smokers were relatively uniform, smoker groups represent extensive heterogeneity in epithelial cells, particularly in alveolar type 2 (AT2) clusters. Among AT2 cells, which are generally regarded as alveolar progenitors, we identified a unique subset that increased in patients with COPD and specifically expressed a series of chemokines including CXCL1 and CXCL8. A trajectory analysis revealed that the inflammatory AT2 cell subpopulation followed a unique differentiation path, and a prediction model of cell-to-cell interactions inferred significantly increased intercellular networks of inflammatory AT2 cells. Our results identify previously unidentified cell subsets and provide an insight into the biological and clinical characteristics of COPD pathogenesis.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales/metabolismo , Diferenciación Celular
8.
Inflamm Regen ; 42(1): 23, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909143

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease that occurs due to increased fibrosis of lung tissue in response to chronic injury of the epithelium. Therapeutic options for IPF remain limited as current therapies only function to decrease disease progression. Recently, extracellular vesicles (EVs), including exosomes and microvesicles, have been recognized as paracrine communicators through the component cargo. The population of cell-specific microRNAs and proteins present in EVs can regulate gene expressions of recipient cells, resulting in modulation of biological activities. EV cargoes reflect cell types and their physiological and pathological status of donor cells. Many current researches have highlighted the functions of EVs on the epithelial phenotype and fibroproliferative response in the pathogenesis of IPF. Furthermore, some native EVs could be used as a cell-free therapeutic approach for IPF as vehicles for drug delivery, given their intrinsic biocompatibility and specific target activity. EV-based therapies have been proposed as a new potential alternative to cell-based approaches. The advantage is that EVs, depending on their source, may be less immunogenic than their parental cells, likely due to a lower abundance of transmembrane proteins such as major histocompatibility complex (MHC) proteins on the surface. In the last decade, mesenchymal stem cell (MSC)-derived EVs have been rapidly developed as therapeutic products ready for clinical trials against various diseases. Considering EV functional complexity and heterogeneity, there is an urgent need to establish refined systemic standards for manufacturing processes and regulatory requirements of these medicines. This review highlights the EV-mediated cellular crosstalk involved in IPF pathogenesis and discusses the potential for EV-based therapeutics as a novel treatment modality for IPF.

9.
J Cachexia Sarcopenia Muscle ; 13(3): 1864-1882, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35373498

RESUMEN

BACKGROUND: Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. METHODS: The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin-/- mice, and human muscle samples from patients with COPD-related sarcopenia. RESULTS: Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin-/- mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. CONCLUSIONS: Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Mitofagia/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Especies Reactivas de Oxígeno/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Eur Respir Rev ; 31(163)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35082125

RESUMEN

The unperturbed lung is highly quiescent, with a remarkably low level of cell turnover. However, once damaged, the lung shows an extensive regenerative capacity, with resident progenitor cell populations re-entering the cell cycle and differentiating to promote repair. This quick and dramatic repair response requires interactions among more than 40 different cell lineages in the lung, and defects in any of these processes can lead to various lung pathologies. Understanding the mechanisms of interaction in lung injury, repair and regeneration thus has considerable practical and therapeutic implications. Moreover, therapeutic strategies for replacing lung progenitor cells and their progeny through cell therapy have gained increasing attention. In the last decade, extracellular vesicles (EVs), including exosomes, have been recognised as paracrine mediators through the transfer of biological cargo. Recent work has revealed that EVs are involved in lung homeostasis and diseases. In addition, EVs derived from specific cells or tissues have proven to be a promising cell-free modality for the treatment of lung diseases. This review highlights the EV-mediated cellular crosstalk that regulates lung homeostasis and discusses the potential of EV therapeutics for lung regenerative medicine.


Asunto(s)
Vesículas Extracelulares , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Pulmón , Regeneración , Medicina Regenerativa
11.
Inflamm Regen ; 41(1): 29, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34593046

RESUMEN

Autophagy is a highly conserved mechanism of delivering cytoplasmic components for lysosomal degradation. Among the three major autophagic pathways, chaperone-mediated autophagy (CMA) is primarily characterized by its selective nature of protein degradation, which is mediated by heat shock cognate 71 kDa protein (HSC70: also known as HSPA8) recognition of the KFERQ peptide motif in target proteins. Lysosome-associated membrane protein type 2A (LAMP2A) is responsible for substrate binding and internalization to lysosomes, and thus, the lysosomal expression level of LAMP2A is a rate-limiting factor for CMA. Recent advances have uncovered not only physiological but also pathological role of CMA in multiple organs, including neurodegenerative disorders, kidney diseases, liver diseases, heart diseases, and cancers through the accumulation of unwanted proteins or increased degradation of target proteins with concomitant metabolic alterations resulting from CMA malfunction. With respect to pulmonary disorders, the involvement of CMA has been demonstrated in lung cancer and chronic obstructive pulmonary disease (COPD) pathogenesis through regulating apoptosis. Further understanding of CMA machinery may shed light on the molecular mechanisms of refractory disorders and lead to novel treatment modalities through CMA modulation.

12.
Nat Commun ; 12(1): 5397, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518534

RESUMEN

Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Inhibidores de Histona Desacetilasas/farmacología , Leucemia Mieloide/genética , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Enfermedad Aguda , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células U937 , Ubiquitina-Proteína Ligasas/metabolismo
13.
J Extracell Vesicles ; 10(10): e12124, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34377373

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by devastating and progressive lung parenchymal fibrosis, resulting in poor patient prognosis. An aberrant recapitulation of developmental lung gene expression, including genes for transforming growth factor (TGF)-ß and WNT, has been widely implicated in the pathogenic IPF wound healing process that results from repetitive alveolar epithelial injury. Extracellular vesicles (EVs) have been shown to carry bioactive molecules and to be involved in various physiological and pathological processes. Here, we demonstrate that, by attenuating WNT signalling, human bronchial epithelial cell-derived EVs (HBEC EVs) inhibit TGF-ß mediated induction of both myofibroblast differentiation and lung epithelial cellular senescence. This effect of HBEC EVs is more pronounced than that observed with mesenchymal stem cell-derived EVs. Mechanistically, the HBEC EV microRNA (miRNA) cargo is primarily responsible for attenuating both myofibroblast differentiation and cellular senescence. This attenuation occurs via inhibition of canonical and non-canonical WNT signalling pathways. Among enriched miRNA species present in HBEC EVs, miR-16, miR-26a, miR-26b, miR-141, miR-148a, and miR-200a are mechanistically involved in reducing WNT5A and WNT10B expression in LFs, and in reducing WNT3A, WNT5A, and WNT10B expression in HBECs. Mouse models utilizing intratracheal administration of EVs demonstrate efficient attenuation of bleomycin-induced lung fibrosis development accompanied by reduced expression of both ß-catenin and markers of cellular senescence. These findings indicate that EVs derived from normal resident lung HBECs may possess anti-fibrotic properties. They further suggest that, via miRNA-mediated inhibition of TGF-ß-WNT crosstalk, HBEC EVs administration can be a promising anti-fibrotic modality of treatment for IPF.


Asunto(s)
Vesículas Extracelulares/metabolismo , Fibrosis Pulmonar Idiopática/terapia , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Factor de Crecimiento Transformador beta/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Células Epiteliales , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt3A/metabolismo
14.
J Immunol ; 207(1): 65-76, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34135057

RESUMEN

Insufficient autophagic degradation has been implicated in accelerated cellular senescence during chronic obstructive pulmonary disease (COPD) pathogenesis. Aging-linked and cigarette smoke (CS)-induced functional deterioration of lysosomes may be associated with impaired autophagy. Lysosomal membrane permeabilization (LMP) is indicative of damaged lysosomes. Galectin-3 and tripartite motif protein (TRIM) 16 play a cooperative role in recognizing LMP and inducing lysophagy, a lysosome-selective autophagy, to maintain lysosome function. In this study, we sought to examine the role of TRIM16-mediated lysophagy in regulating CS-induced LMP and cellular senescence during COPD pathogenesis by using human bronchial epithelial cells and lung tissues. CS extract (CSE) induced lysosomal damage via LMP, as detected by galectin-3 accumulation. Autophagy was responsible for modulating LMP and lysosome function during CSE exposure. TRIM16 was involved in CSE-induced lysophagy, with impaired lysophagy associated with lysosomal dysfunction and accelerated cellular senescence. Airway epithelial cells in COPD lungs showed an increase in lipofuscin, aggresome and galectin-3 puncta, reflecting accumulation of lysosomal damage with concomitantly reduced TRIM16 expression levels. Human bronchial epithelial cells isolated from COPD patients showed reduced TRIM16 but increased galectin-3, and a negative correlation between TRIM16 and galectin-3 protein levels was demonstrated. Damaged lysosomes with LMP are accumulated in epithelial cells in COPD lungs, which can be at least partly attributed to impaired TRIM16-mediated lysophagy. Increased LMP in lung epithelial cells may be responsible for COPD pathogenesis through the enhancement of cellular senescence.


Asunto(s)
Lisosomas/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Enfermedad Pulmonar Obstructiva Crónica/patología
15.
J Extracell Vesicles ; 10(8): e12092, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34122778

RESUMEN

The clinical manifestations of COVID-19 vary broadly, ranging from asymptomatic infection to acute respiratory failure and death. But the predictive biomarkers for characterizing the variability are still lacking. Since emerging evidence indicates that extracellular vesicles (EVs) and extracellular RNAs (exRNAs) are functionally involved in a number of pathological processes, we hypothesize that these extracellular components may be key determinants and/or predictors of COVID-19 severity. To test our hypothesis, we collected serum samples from 31 patients with mild COVID-19 symptoms at the time of their admission for discovery cohort. After symptomatic treatment without corticosteroids, 9 of the 31 patients developed severe/critical COVID-19 symptoms. We analyzed EV protein and exRNA profiles to look for correlations between these profiles and COVID-19 severity. Strikingly, we identified three distinct groups of markers (antiviral response-related EV proteins, coagulation-related markers, and liver damage-related exRNAs) with the potential to serve as early predictive biomarkers for COVID-19 severity. As the best predictive marker, EV COPB2 protein, a subunit of the Golgi coatomer complex, exhibited significantly higher abundance in patients remained mild than developed severe/critical COVID-19 and healthy controls in discovery cohort (AUC 1.00 (95% CI: 1.00-1.00)). The validation set included 40 COVID-19 patients and 39 healthy controls, and showed exactly the same trend between the three groups with excellent predictive value (AUC 0.85 (95% CI: 0.73-0.97)). These findings highlight the potential of EV COPB2 expression for patient stratification and for making early clinical decisions about strategies for COVID-19 therapy.


Asunto(s)
COVID-19/sangre , COVID-19/fisiopatología , Ácidos Nucleicos Libres de Células/sangre , Proteína Coatómero/sangre , Vesículas Extracelulares/química , Biomarcadores/sangre , COVID-19/inmunología , Humanos , Estudios Retrospectivos , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad
16.
J Asthma Allergy ; 14: 609-618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113131

RESUMEN

BACKGROUND: In Japan, biologic therapy was initiated for patients with severe asthma in 2009. In recent years, four biologics with different mechanisms of action have become available in the clinical setting. However, the efficacy of switching between biologics remains uncertain. METHODS: To elucidate the efficacy of switching between biologics, 97 patients were enrolled who had received any biologic therapy for severe asthma at Jikei University Hospital, Tokyo, Japan, from July 2009 to December 2020. We retrospectively examined the patient characteristics, biomarkers, pulmonary function test results, selected biologics, and efficacy. RESULTS: Thirty-one males and 66 females received any biologics. The mean age was 53.3 years at the initiation of biologic therapy. Initially, 33, 41, 15 and eight patients received omalizumab, mepolizumab, benralizumab, and dupilumab, respectively. Among three representative indicators for biologics administration, the peripheral blood eosinophil count, serum IgE levels and fractional exhaled nitric oxide, 64% of the patients had two indicators, and 28% had three indicators. Thirty-four patients (35%) switched from the initial biologic to another, and the reasons for switching included persistent asthmatic symptoms (n=22), schedule of hospital visits (n=5), and other reasons. Thus, the treatment was effective in 11 patients after switching. In addition, two patients received combination therapy with different biologics. Eighteen patients (19%) interrupted treatment for various reasons. Regardless of whether the biologic was the initial therapy, the overall efficacy of the four biologics was 60% based on the global evaluation of treatment effectiveness. CONCLUSION: Switching between biologics can be a promising option for severe asthma patients in whom treatment with an initial biologic is ineffective.

17.
Sci Rep ; 11(1): 9749, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980877

RESUMEN

Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-ß protein (Aß) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aß levels and suppression of inflammation.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo , Grasas Insaturadas en la Dieta/uso terapéutico , Ácidos Linoleicos Conjugados/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Animales , Citocinas/análisis , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL
18.
Cancer Sci ; 111(11): 4154-4165, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32860290

RESUMEN

Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of selective soluble proteins. Lysosome-associated membrane protein type 2a (LAMP2A) is the key receptor protein of CMA; downregulation of LAMP2A leads to CMA blockade. Although CMA activation has been involved in cancer growth, CMA status and functions in non-small cell lung cancer (NSCLC) by focusing on the roles in regulating chemosensitivity remain to be clarified. In this study, we found that LAMP2A expression is elevated in NSCLC cell lines and patient's tumors, conferring poor survival and platinum resistance in NSCLC patients. LAMP2A knockdown in NSCLC cells suppressed cell proliferation and colony formation and increased the sensitivity to chemotherapeutic drugs in vitro. Furthermore, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with CMA blockade. Remarkably, LAMP2A knockdown repressed tumorigenicity and sensitized the tumors to cisplatin treatment in NSCLC-bearing mice. Our discoveries suggest that LAMP2A is involved in the regulation of cancer malignant phenotypes and represents a promising new target against chemoresistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Pronóstico , Proteolisis
19.
Neuroscience ; 443: 1-7, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682823

RESUMEN

Amyloid-ß proteins (A ß), including Aß42 and A ß 43, are known pathogenesis factors of Alzheimer's disease (AD). Unwanted substances in the brain, including A ß, are generally removed by microglia, astrocytes, or neurons via a phagocytosis receptor. We observed that neurons and astrocytes engulfed A ß 42 and A ß 43, which are more neurotoxic than A ß 40. We previously showed that multiple-EGF like domains 10 (MEGF10) plays an important role in apoptotic cell elimination and is expressed in mammalian neurons and astrocytes. Therefore, we assessed whether MEGF10 is involved in A ß42 and A ß43 engulfment in MEGF10-expressing neurons and astrocytes. We found that MEGF10-expressing astrocytes and neurons engulfed A ß42 and A ß43 but not A ß40. Furthermore, incubation of the neurons and astrocytes with A ß42 and A ß43a ugmented MEGF10 phosphorylation; however, incubation with A ß40 did not have this augmenting effect. Our findings suggest that MEGF10 plays a phagocytosis receptor function for A ß42 and A ß43 in neurons and astrocytes.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Péptidos beta-Amiloides/toxicidad , Animales , Astrocitos , Proteínas de la Membrana , Neuronas
20.
J Immunol ; 205(5): 1256-1267, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32699159

RESUMEN

Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.


Asunto(s)
Apoptosis/fisiología , Autofagia Mediada por Chaperones/fisiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Respuesta de Proteína Desplegada/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Lisosomas/metabolismo , Lisosomas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos , Nicotiana/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...