Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 23(11): e202300148, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37417711

RESUMEN

Heterogeneous noble metal catalysts exhibit various functions. Although their redox functions have been extensively studied, we focused on their soft Lewis acid functions. Supported Au, Pt, and Pd catalysts electrophilically attack the π-electrons of soft bases such as alkynes, alkenes, and aromatic compounds to perform addition and substitution reactions. Hydroamination, intramolecular cyclization of alkynyl carboxylic acids, isomerization of allylic esters, vinyl exchange reactions, Wacker oxidation, and oxidative homocoupling of aromatics are introduced based on a discussion of the active species and reaction mechanisms. Furthermore, the adsorption of sulfur compounds, which are soft bases, onto the supported AuNPs is discussed. The adsorption and removal of 1,3-dimethyltrisulfane (DMTS), which is the compound responsible for the stale odor of "hine-ka" in alcoholic beverages, particularly Japanese sake, is described.

2.
Sci Rep ; 13(1): 8275, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217598

RESUMEN

In this study, we developed a new synthetic strategy to convert secoiridoid glucosides into unique dialdehydic compounds using solid acid catalysts. Specifically, we succeeded in the direct synthesis of oleacein, a rare component of extra-virgin olive oil, from oleuropein, which is abundant in olive leaves. Whereas the conventional total synthesis of oleacein from lyxose requires more than 10 steps, these solid acid catalysts enabled the one-step synthesis of oleacein from oleuropein. A key step in this synthesis was the selective hydrolysis of methyl ester. Density functional theory calculations at the B3LYP/631+G (d) level of theory revealed the formation of a tetrahedral intermediate bonded to one H2O molecule. These solid acid catalysts were easily recovered and reused at least five times by simple cleaning. Importantly, this synthetic procedure was not only applicable to other secoiridoid glucosides, but could also be employed for the corresponding scale-up reaction using oleuropein extracted from olive leaves as the starting material.

3.
Chemphyschem ; 24(1): e202200389, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36089540

RESUMEN

The effect of the Pt shell thickness on the oxygen reduction reaction (ORR) of a Pd@Pt core-shell catalyst was studied using surface science technics and computational approaches. We found Pt shells on Pd rods to be negatively charged because of charge transfer from the Pd substrate when the shell thicknesses were 0.5 or 1 monolayer (ML). The activities of the ORR of the model surface with a Pt shell of 0.5 or 1 ML were similar and more than twice the activities of a Pt/C or Pt rod. The relationship between the ORR activity and the thickness of the Pt shell was the exact opposite of the relationship between the Pt binding energy and the Pt shell thickness. The indication was that more negatively charged Pt had higher ORR activity. Density functional theory calculations confirmed that a single layer of Pt atoms located on Pd was negatively charged compared to pure Pt and resulted in a lower barrier to the rate-limiting step of the ORR.


Asunto(s)
Oxígeno , Paladio , Platino (Metal) , Oxidación-Reducción , Catálisis
4.
ACS Omega ; 7(50): 47120-47128, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570269

RESUMEN

Supported platinum nanoparticles are currently the most functional catalysts applied in commercial chemical processes. Although investigations have been performed to improve the dispersion and thermal stability of Pt particles, it is challenging to apply amorphous silica supports to these systems owing to various Pt species derived from the non-uniform surface structure of the amorphous support. Herein, we report the synthesis and characterization of amorphous silica-supported Pt nanoparticles from (cod)Pt-disilicate complex (cod = 1,5-cyclooctadiene), which forms bis-grafted surface Pt species regardless of surface heterogeneity. The synthesized Pt nanoparticles were highly dispersible and had higher hydrogenation activity than those prepared by the impregnation method, irrespective of the calcination and reduction temperatures. The high catalytic activity of the catalyst prepared at low temperatures (such as 150 °C) was attributed to the formation of Pt nanoparticles triggered by the reduction of cod ligands under H2 conditions, whereas that of the catalyst prepared at high temperatures (up to 450 °C) was due to the modification of the SiO2 surface by grafting of the (cod)Pt-disilicate complex.

5.
J Am Chem Soc ; 144(27): 12158-12166, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35762507

RESUMEN

The reaction mechanism of the CH3OH synthesis by the hydrogenation of CO2 on Cu catalysts is unclear because of the challenge in experimentally detecting reaction intermediates formed by the hydrogenation of adsorbed formate (HCOOa). Thus, the objective of this study is to clarify the reaction mechanism of the CH3OH synthesis by establishing the kinetic natures of intermediates formed by the hydrogenation of adsorbed HCOOa on Cu(111). We exposed HCOOa on Cu(111) to atomic hydrogen at low temperatures of 200-250 K and observed the species using infrared reflection absorption (IRA) spectroscopy and temperature-programmed desorption (TPD) studies. In the IRA spectra, a new peak was observed upon the exposure of HCOOa on Cu(111) to atomic hydrogen at 200 K and was assigned to the adsorbed dioxymethylene (H2COOa) species. The intensity of the new peak gradually decreased with heating from 200 to 290 K, whereas the IR peaks representing HCOOa species increased correspondingly. In addition, small amounts of formaldehyde (HCHO), which were formed by the exposure of HCOOa species to atomic hydrogen, were detected in the TPD studies. Therefore, H2COOa is formed via hydrogenation by atomic hydrogen, which thermally decomposes at ∼250 K on Cu(111). We propose a potential diagram of the CH3OH synthesis via H2COOa from CO2 on Cu surfaces, with the aid of density functional theory calculations and literature data, in which the hydrogenation of bidentate HCOOa to H2COOa is potentially the rate-determining step and accounts for the apparent activation energy of the methanol synthesis from CO2 on Cu surfaces.

6.
RSC Adv ; 12(19): 11877-11884, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481092

RESUMEN

The monoallylation of aniline to give N-allyl aniline is a fundamental transformation process that results in various kinds of valuable building block allyl compounds, which can be used in the production of pharmaceuticals and electronic materials. For decades, sustainable syntheses have been gaining much attention, and the employment of allyl alcohol as an allyl source can follow the sustainability due to the formation of only water as a coproduct through dehydrative monoallylation. Although the use of homogeneous metal complex catalysts is a straightforward choice for the acceleration of dehydrative monoallylation, the use of soluble catalysts tends to contaminate products. We herein present a 10 wt% WO3/ZrO2 catalyzed monoallylation process of aniline to give N-allyl anilines in good yields with excellent selectivity, which enables the continuous selective flow syntheses of N-allyl aniline with 97-99% selectivity. The performed detailed study about the catalytic mechanism suggests that the dispersed WO3 with the preservation of the W(vi) oxidation state of 10 wt% WO3/ZrO2 with appropriate acidity and basicity is crucial for the monoallylation. The inhibition of the over allylation of the N-allyl anilines is explained by the unwilling contact of the N-allyl aniline with the active sites of WO3/ZrO2 due to the steric hindrance.

7.
Chem Pharm Bull (Tokyo) ; 69(7): 698-701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193718

RESUMEN

By employing a silica-coated magnetite as a catalyst, a silica-catalyzed carboxylative cyclization of propargylic amines with carbon dioxide (CO2) proceeded to afford the corresponding 2-oxazolidinones. Moreover, after the reaction, the silica-coated magnetic catalyst was readily recovered by use of an external magnet and could be reused up to six times without deactivation.


Asunto(s)
Aminas/química , Dióxido de Carbono/química , Magnetismo , Dióxido de Silicio/química , Catálisis , Ciclización , Oxazolidinonas/química
8.
Org Biomol Chem ; 19(5): 1115-1121, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33438709

RESUMEN

The oxidation of alcohols to aldehydes is a powerful reaction pathway for obtaining valuable fine chemicals used in pharmaceuticals and biologically active compounds. Although many oxidants can oxidize alcohols, only a few hydrogen peroxide oxidations can be employed to continuously synthesize aldehydes in high yields using a liquid-liquid two-phase flow reactor, despite the possibility of the application toward a safe and rapid multi-step synthesis. We herein report the continuous flow synthesis of (E)-cinnamaldehyde from (E)-cinnamyl alcohol in 95%-98% yields with 99% selectivity for over 5 days by the selective oxidation of hydrogen peroxide using a catalyst column in which Pt is dispersed in SiO2. The active species for the developed selective oxidation is found to be zero-valent Pt(0) from the X-ray photoelectron spectroscopy measurements of the Pt surface before and after the oxidation. Using Pt black diluted with SiO2 as a catalyst to retain the Pt(0) species with the optimal substrate and H2O2 introduction rate not only enhances the catalytic activity but also maintains the activity during the flow reaction. Optimizing the contact time of the substrate with Pt and H2O2 using a flow reactor is important to proceed with the selective oxidation to prevent the catalytic H2O2 decomposition.

9.
Phys Chem Chem Phys ; 23(13): 7724-7734, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32870215

RESUMEN

Two-dimensional hydrogen boride (HB) sheets were recently demonstrated to act as a solid acid catalyst in their hydrogen-deficient state. However, both the active sites and the mechanism of the catalytic process require further elucidation. In this study, we analyzed the conversion of ethanol adsorbed on HB sheets under vacuum during heating using in situ Fourier transform infrared (FT-IR) absorption spectroscopy with isotope labelling. Up to 450 K, the FT-IR peak associated with the OH group of the adsorbed ethanol molecule disappeared from the spectrum, which was attributed to a dehydration reaction with a hydrogen atom from the HB sheet, resulting in the formation of an ethyl species. At temperatures above 440 K, the number of BD bonds markedly increased in CD3CH2OH, compared to CH3CD2OH; the temperature dependence of the formation rate of BD bonds was similar to that of the dehydration reaction rate of ethanol on HB sheets under steady-state conditions. The rate-determining step of the dehydration of ethanol on HB was thus ascribed to the dehydrogenation of the methyl group of the ethyl species on the HB sheets, followed by the immediate desorption of ethylene. These results show that the catalytic ethanol dehydration process on HB involves the hydrogen atoms of the HB sheets. The obtained mechanistic insights are expected to promote the practical application of HB sheets as catalysts.

10.
ACS Omega ; 4(9): 14100-14104, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497729

RESUMEN

Hydrogen boride (HB) or hydrogenated borophene sheets are recently realized two-dimensional materials that are composed of only two light elements, boron and hydrogen. However, their catalytic activity has not been experimentally analyzed. Herein, we report the catalytic activity of HB sheets in ethanol reforming. HB sheets catalyze the conversion of ethanol to ethylene and water above 493 K with high selectivity, independent of the contact time, and with an apparent activation energy of 102.8 ± 5.5 kJ/mol. Hence, we identify that HB sheets act as solid-acid catalysts.

11.
Science ; 357(6354)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28860354

RESUMEN

Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized.


Asunto(s)
Dominio Catalítico , Metanol/química , Catálisis , Hidrogenación , Óxido de Zinc/química
12.
Angew Chem Int Ed Engl ; 50(43): 10144-7, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21928450
16.
J Chem Phys ; 122(1): 14703, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15638687

RESUMEN

The adsorption and decomposition of NO have been investigated by using density functional theory method at the generalized gradient approximation level. We have performed calculations on adsorption energies and structures of NO on Ni(211) and Pd(211) surfaces with full-geometry optimization and compared them with the experimental data. The most favorite adsorption on both surfaces occurs at the bridge site parallel to step edge (sb), while the energy difference from the second favorite site of a threefold hollow site near step edge is less than 0.1 eV. Decomposition pathways have been investigated with transition state search. The decomposition pathway, where NO leans toward the step, is most probable for both surfaces. The overall activation energy for decomposition is 0.39 and 1.26 eV for Ni(211) and Pd(211), respectively. The present results clearly show that the NO molecules on Pd(211) are less activated than those on Ni(211). We have studied also reorganization of NO on Pd(211) at higher coverages up to 1/3 ML (monolayer) [three NO molecules in a (3 x 1) unit cell]. The site occupation is not in a sequential manner as the NO coverage is increased, and a reorganization of NO adsorbates occurs (the NO molecule at sb becomes tilting up at higher coverage), which can interpret the experimental data of Yates and co-workers very well.

17.
J Phys Chem B ; 109(20): 10312-8, 2005 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16852249

RESUMEN

Adsorption of NO on Pt(110)-(1 x 2) and (1 x 1) surfaces has been investigated by density functional theory (DFT) method (periodic DMol(3)) with full geometry optimization and without symmetry restriction. Adsorption energies, structures, and N-O stretching vibrational frequencies of NO are studied by considering multiple possible adsorption sites and comparing with the experimental data. Adsorption is strongly dependent on both coverage and surface phase. The assignment of adsorption sites has been carried out with precise calculation of vibrational frequencies for NO on various sites. We clearly show the NO site switching on both of the surfaces as found in the experiments: at low coverages, bridge species is formed on the surface, and at high coverages, NO switches to atop sites.

18.
J Phys Chem B ; 109(37): 17603-7, 2005 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16853252

RESUMEN

Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K.

19.
Chem Commun (Camb) ; (23): 2816-7, 2002 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-12478761

RESUMEN

The catalytic activity of Pd/Al2O3 prepared from various palladium precursors for direct NO decomposition is closely related to the fraction of surface step sites capable of dissociating NO, on the basis of a surface science study using single-crystal model catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...