Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 8787-8799, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520348

RESUMEN

Harnessing solar energy to produce value-added fuels and chemicals through photocatalysis techniques holds promise for establishing a sustainable and environmentally friendly energy economy. The intricate dynamics of photogenerated charge carriers lies at the core of the photocatalysis. The balance between charge trapping and band-edge recombination has a crucial influence on the activity of semiconductor photocatalysts. Consequently, the regulation of traps in photocatalysts becomes the key to optimizing their activities. Nevertheless, our comprehension of charge trapping, compared to that of well-studied charge recombination, remains somewhat limited. This limitation stems from the inherently heterogeneous nature of traps at both temporal and spatial scales, which renders the characterization of charge trapping a formidable challenge. Fortunately, recent advancements in both time-resolved spectroscopy and space-resolved microscopy have paved the way for considerable progress in the investigation and manipulation of charge trapping. In this Perspective, we focus on charge trapping in photocatalysts with the aim of establishing a direct link to their photocatalytic activities. To achieve this, we begin by elucidating the principles of advanced time-resolved spectroscopic techniques such as femtosecond time-resolved transient absorption spectroscopy and space-resolved microscopic methods, such as single-molecule fluorescence microscopy and surface photovoltage microscopy. Additionally, we provide an overview of noteworthy research endeavors dedicated to probing charge trapping using time- and space-resolved techniques. Our attention is then directed toward recent achievements in the manipulation of charge trapping in photocatalysts through defect engineering. Finally, we summarize this Perspective and discuss the future challenges and opportunities that lie ahead in the field.

2.
Angew Chem Int Ed Engl ; 63(14): e202401117, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380969

RESUMEN

A sequential process via photoredox catalysis and Lewis acid mediation for C-F bond transformation of the CF2 unit in perfluoroalkyl groups has been achieved to transform perfluoroalkylarenes into complex fluoroalkylated compounds. A phenothiazine-based photocatalyst promotes the defluoroaminoxylation of perfluoroalkylarenes with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) under visible light irradiation, affording the corresponding aminoxylated products. These products undergo a further defluorinative transformation with various organosilicon reagents mediated by AlCl3 to provide highly functionalized perfluoroalkyl alcohols. Our novel phenothiazine catalyst works efficiently in the defluoroaminoxylation. Transient absorption spectroscopy revealed that the catalyst regeneration step is crucial for the photocatalytic aminoxylation.

3.
Photochem Photobiol Sci ; 23(2): 329-338, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300465

RESUMEN

Radiation detection plays an important role in diverse applications, including medical imaging, security, and display technologies. Scintillators, materials that emit light upon exposure to radiation, have garnered significant attention due to their exceptional sensitivity. Previous research explored polymer dots (P-dots) doped with iridium complexes as nano-sized scintillators for radiation detection, but these were constrained to emitting specific colors like red, green, and blue, limiting their utility. Recently, there has been a breakthrough in the development of white light emitters stimulated by UV-visible light. These emitters exhibit a broad spectral range in the visible wavelength, enhancing contrast and simplifying detection by visible-light sensors. Consequently, the quest for white color scintillators in radiation detection has emerged as a promising avenue for enhancing scintillation efficiency. In this study, we present a novel approach by applying P-dots doped with two iridium complexes to create white light-emitting nano-sized scintillators. These scintillators offer a wider spectral coverage within the visible-light wavelength range. Under UV light (365 nm) excitation, our synthesized P-dots exhibited remarkable white light emission. Moreover, when excited by electron beam irradiation, we observed the clear emission close to white emission which is valuable for improving the detection of radiation.

4.
Chem Commun (Camb) ; 60(7): 889-892, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165640

RESUMEN

Development of two-dimensional materials and exploration of their functionalities are significant challenges due to their potential. In this study, we successfully fabricated a supramolecular nanosheet composed of amphiphilic Rose Bengal dyes in an aqueous medium. Furthermore, we elucidated a distinct change in the photosensitisation mechanism induced by nanosheet formation.

5.
J Phys Chem A ; 127(40): 8330-8337, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37767560

RESUMEN

For the first time, the dynamics of excited fullerene dianions and associated intramolecular electron transfer (ET) were directly investigated by using femtosecond pump-probe laser flash photolysis on selectively reduced C60, pyrrolidino[60]fullerene (C60H), and dyads including C60-naphthalenediimide (NDI) and C60-pyromellitimide (PI). Upon near-infrared laser excitation, the excited dianion of C60 or C60H displayed two states with lifetimes of less than one and several tens of ps, attributed to prompt internal conversion from the theoretically predicted Sn state. Furthermore, the ET processes from the excited C602- in dyad molecules, including C602--NDI•- and C602--PI•-, were confirmed with varied ET rate constants due to the difference in the driving force for ET. The current findings provide a clear description of the hitherto uncharted excited-state and photoinduced ET characteristics of fullerene dianions, paving the way for photochemical studies of excited multi-ions (excited multi-polarons) and their application in organic semiconducting materials.

6.
Nanoscale Adv ; 5(13): 3424-3427, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37383072

RESUMEN

We demonstrate that polymer dots doped with thermally activated delayed fluorescence (TADF) molecules clearly exhibit blue radio-luminescence upon hard X-ray and electron beam irradiation, which is a new design for nano-sized scintillators.

7.
Inorg Chem ; 62(30): 11785-11795, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307067

RESUMEN

Co(II)-pyrocobester (P-Co(II)), a dehydrocorrin complex, was semisynthesized from vitamin B12 (cyanocobalamin), and its photochemical and electrochemical properties were investigated and compared to those of the cobester (C-Co(II)), the cobalt-corrin complex. The UV-vis absorptions of P-Co(II) in CH2Cl2, ascribed to the π-π* transition, were red-shifted compared to those of C-Co(II) due to the π-expansion of the macrocycle in the pyrocobester. The reversible redox couple of P-Co(II) was observed at E1/2 = -0.30 V vs Ag/AgCl in CH3CN, which was assigned to the Co(II)/Co(I) redox couple by UV-vis, ESR, and molecular orbital analysis. This redox couple was positively shifted by 0.28 V compared to that of C-Co(II). This is caused by the high electronegativity of the dehydrocorrin macrocycle, which was estimated by DFT calculations for the free-base ligands. The reactivity of the Co(I)-pyrocobester (P-Co(I)) was evaluated by the reaction with methyl iodide in CV and UV-vis to form a photosensitive Co(III)-CH3 complex (P-Co(III)-CH3). The properties of the excited state of P-Co(I), *Co(I), were also investigated by femtosecond transient absorption (TA) spectroscopy. The lifetime of *Co(I) was estimated to be 29 ps from the kinetic trace at 587 nm. The lifetime of *Co(I) became shorter in the presence of Ar-X, such as iodobenzonitrile (1a), bromobenzonitrile (1b), and chlorobenzonitrile (1c), and the rate constants of electron transfer (ET) between the *Co(I) and Ar-X were determined to be 2.9 × 1011 M-1 s-1, 4.9 × 1010 M-1 s-1, and 1.0 × 1010 M-1 s-1 for 1a, 1b, and 1c, respectively.

8.
RSC Adv ; 13(22): 15126-15131, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37207100

RESUMEN

In this study, we synthesized radioexcitable luminescent polymer dots (P-dots) doped with heteroleptic tris-cyclometalated iridium complexes that emit red, green, and blue light. We investigated the luminescence properties of these P-dots under X-ray and electron beam irradiation, revealing their potential as new organic scintillators.

9.
Org Biomol Chem ; 21(14): 2983-2989, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36942556

RESUMEN

Nitric oxide (NO) is a signaling molecule that plays a variety of functions in the human body, but it is difficult to use it in biological experiments or for therapeutic purposes because of its high reactivity and instability in the biological milieu. Consequently, photocontrollable NO releasers, which enable spatiotemporal control of NO release, have an important role in elucidating the functions of NO. Our group has developed visible-light-controllable NO-releasing molecules that contain a fluorescent dye structure as a light-harvesting antenna moiety and an N-nitrosoaminophenol structure as an NO-releasing moiety. Here, we aimed to construct an NO-generating system employing an intermolecular photoredox reaction between the two separate components, since this would simplify chemical synthesis and make it easier to examine various dyes as antennae. For this purpose, we constructed polymer nanoparticles doped with both N-methyl-N-nitroso-4-aminophenol (NAP, 1) and an Ir(III) antenna complex (2, 3 or 4) in order to dissolve in aqueous solution without a co-solvent. These polymer nanoparticles released NO upon photoirradiation in vitro in the purple (400-430 nm) or blue (400-460 nm) wavelength region to activate the doped Ir(III) complex.


Asunto(s)
Óxido Nítrico , Polímeros , Humanos , Óxido Nítrico/química , Polímeros/química , Aminofenoles/química , Colorantes Fluorescentes/química
10.
Phys Chem Chem Phys ; 25(13): 9152-9157, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36942738

RESUMEN

Diaryldisulfides are known to undergo S-S bond cleavage upon one-electron reduction, which is called mesolysis of radical anions, to form the corresponding arylthiyl radical and anion. In this study, we prepared (4-cyanophenyl)(4'-methoxyphenyl)disulfide (MeOSSCN), and the mesolytic profiles were investigated by γ-ray and pulsed-electron radiolyses in 2-methyltetrahydrofuran. As a result of radiolysis of MeOSSCN at room and lower temperatures, the formation of the methoxythiyl radical was recognized upon mesolysis of the radical anion. This observation indicated that intramolecular electron transfer in the radical anion occurred, and the stepwise mechanism was operative after the attached electron occupied the antibonding σ*-orbital for promoting the S-S bond cleavage. According to the Arrhenius expression for the decay rates of the radical anion, the activation energy and frequency factor were determined. DFT calculations provided the bond dissociation energy and bond length for the S-S bond and charge distribution on the S atoms in the radical anion. The substituent effects on the mesolysis process are discussed.

11.
Chemistry ; 29(19): e202203552, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36601797

RESUMEN

Fluorescence imaging uses changes in the fluorescence intensity and emission wavelength to analyze multiple targets simultaneously. To increase the number of targets that can be identified simultaneously, fluorescence blinking can be used as an additional parameter. To understand and eventually control blinking, we used DNA as a platform to elucidate the processes of electron transfer (ET) leading to blinking, down to the rate constants. With a fixed ET distance, various blinking patterns were observed depending on the DNA sequence between the donor and acceptor units of the DNA platform. The blinking pattern was successfully described with a combination of ET rate constants. Therefore, molecules with various blinking patterns can be developed by tuning ET. It is expected that the number of targets that can be analyzed simultaneously will increase by the power of the number of blinking patterns.


Asunto(s)
Parpadeo , Electrones , Fluorescencia , Transporte de Electrón , ADN
12.
Nanoscale Adv ; 4(14): 2992-2995, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36133516

RESUMEN

Porphyrin covalent organic nanodisks (CONs) were synthesized by exfoliating covalent organic frameworks (COFs) in acidic aqueous solutions at pH 4. The synthesized CONs showed remarkable bactericidal activity against Escherichia coli owing to enhanced generation of singlet oxygen upon visible light irradiation.

13.
JACS Au ; 2(6): 1472-1478, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35783162

RESUMEN

Photosensitizers (PSs) are critical substances with considerable potential for use in non-invasive photomedicine. Type I PSs, which generate reactive radical species by electron transfer from the excited state induced via photoirradiation, attracted much attention because of their suitability for photodynamic therapy (PDT) irrespective of the oxygen concentration. However, most organic PSs are type II, which activates only oxygen, generating singlet oxygen (1O2) via energy transfer from the triplet state. Here, we proposed a strategy to form type I supramolecular PSs (SPSs) utilizing the charge-separated state induced by self-assembly. This was demonstrated using a supramolecular assembly of fluorescein, which is a type II PS in the monomeric state; however, it changes to a type I SPS via self-assembly. The switching mechanism from type II to I via self-assembly was clarified using photophysical and electrochemical analyses, with the type I SPS exhibiting significant PDT effects on cancer cells. This study provides a promising approach for the development of type I PSs based on supramolecular assemblies.

14.
ACS Omega ; 7(8): 7172-7178, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252707

RESUMEN

Organic polymers derived from covalent organic frameworks (COFs) have various applications, including photocatalysis. The synthesis of organic polymer materials from COFs to obtain higher activity for photocatalysis by changing the unit molecule has been investigated. The choice of the unit molecule is important to characterize the photochemical properties. Among various such unit molecules, porphyrins have attracted much attention as organic chromophores commonly used in photocatalytic reactions with COFs. Although COFs with various organic chromophores have been synthesized and attempts have been made to improve their photocatalytic activity, enhancing the photocatalytic activity by adjusting the layer thickness through exfoliation of COFs has yet to be fully studied. In the present study, the exfoliation of metalloporphyrin-based COFs with pyridine as the axial ligand and adjustment of the layer thickness were found to enhance the photocatalytic activity. Hydrogen generation and 3,3',5,5'-tetramethylbenzidine oxidation reactions were investigated as representative photocatalytic reactions, with the photocatalytic activity up to 7 times that of the original free-base porphyrin COFs. These results indicate that the different thicknesses synthesized by exfoliating COFs increased the photocatalytic effect of polymers.

15.
ACS Omega ; 6(47): 31557-31565, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34869981

RESUMEN

Rutile TiO2 nanorods with lengths greater than 600 nm and aspect ratios greater than ca. 16 were synthesized through a one-pot hydrothermal method using lactic acid (LA) as a structure-directing agent. Under the hydrothermal treatment at 200 °C, the LA concentration higher than 1.6 mol dm-3 and the hydrothermal time of 72 h were needed to obtain 100% rutile nanorods. The length and the width of the nanorods increased with the increasing LA concentration. The photocatalytic activity of the synthesized nanorods was evaluated for the oxygen evolution in aqueous AgNO3 solutions under ultraviolet irradiation. Calcination of the synthesized nanorods at 400 °C was required to decompose residual organic compounds on the surface and improve the oxygen evolution. The highest oxygen evolution rate was obtained with the nanorods after being calcined at 800 °C. It is worth noting that the nanorods retained their shape (aspect ratio of 8.8) at 800 °C. Selected area electron diffraction patterns indicated that the side or the end surface of the nanorods was attributable to the {110} or {111} facet, respectively. Deposition of Pt or PbO2 on the nanorods revealed that the {110} or {111} facet acted as reductive or oxidative sites. For comparison, near-spherical TiO2 nanoparticles were synthesized by a sol-gel method. Furthermore, using glycolic acid as the structure-directing agent, we synthesized small rutile TiO2 nanorods (aspect ratio of 9) and changed the shape to near-spherical (aspect ratio of 1.3) by calcining at 800 °C. Time-resolved diffuse reflectance spectra were measured to determine the lifetime of the photogenerated electrons. The photocatalytic activity of the nanorods was much lower than that of the near-spherical TiO2 nanoparticles. However, the nanorods synthesized with LA are useful as catalyst support or platforms for various applications because of their unique morphology and high heat resistance.

16.
Chem Commun (Camb) ; 57(85): 11217-11220, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34623360

RESUMEN

We report the aggregation-induced photosensitizing activity of a cyanine dye in water and the mechanism. In addition, using the supramolecular assembly, visible-light-driven photooxidation of hydrophobic aromatic compounds in water was successfully performed.

17.
Chembiochem ; 22(17): 2729-2735, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34191388

RESUMEN

Functional nucleic acids with the capability of generating fluorescence in response to hybridization events, microenvironment or structural changes are valuable as structural probes and chemical sensors. We now demonstrate the enzyme-assisted preparation of nucleic acids possessing multiple thiazole orange (TO) dyes and their fluorescent behavior, that show a spectral change from the typical monomer emission to the excimer-type red-shifted emission. We found that the fluorescent response and emission wavelength of the TO dyes were dependent on both the state of the DNA structure (single- or double-stranded DNA) and the arrangement of the TO dyes. We showed that the fluorescent behavior of the TO dyes can be applied for the detection of RNA molecules, suggesting that our approach for preparing the fluorescent nucleic acids functionalized with multiple TO dyes could be useful to design a fluorescence bioimaging and detection technique of biomolecules.


Asunto(s)
Benzotiazoles/química , ADN/química , Quinolinas/química , Aminación , Dicroismo Circular , Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico , Oxidación-Reducción , Espectrometría de Fluorescencia , Temperatura de Transición
18.
Angew Chem Int Ed Engl ; 60(23): 12941-12948, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33783937

RESUMEN

To explore the dynamics of biomolecules, tracing the kinetics of photo-induced chemical reactions via the triplet excited state (T1 ) of probe molecules offers a timescale that is about 106 times wider than via the singlet excited state (S1 ). Using cyclooctatetraene (COT) as a triplet energy acceptor and at the same time as a photostabilizer, the triplet-triplet energy transfer (TTET) kinetics governed by oligonucleotide (oligo) dynamics were studied at the single-molecule level by measuring fluorescence blinking. TTET kinetics measurement allowed us to access the length- and sequence-dependent dynamics of oligos and realize the single-molecule detection of a model microRNA biomarker. In sharp contrast to the singlet-singlet Förster resonance energy transfer (FRET) that occurs in the 1-10 nm range, TTET requires a Van der Waals contact. The present method is thus a complementary method to FRET and provides direct information on biomolecular dynamics on the µs to ms timescale.


Asunto(s)
Ciclooctanos/química , Oligonucleótidos/química , Imagen Individual de Molécula , Transferencia Resonante de Energía de Fluorescencia , Cinética , Estructura Molecular
19.
Chem Commun (Camb) ; 57(29): 3532-3542, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33729263

RESUMEN

Photocatalysis holds great potential in alleviating the growing energy crisis and environmental issues. Defect engineering has been demonstrated as an effective method to modulate the electronic structure of semiconductor photocatalysts for enhanced visible light absorption. However, the effect of defects on photocatalytic activity is still under debate because of the elusive charge transfer process mediated by defects. In this feature article, we summarize our recent progress in unraveling the defect-mediated electron transfer of the widely studied TiO2 and polymeric carbon nitride photocatalysts by combining ultrafast time-resolved spectroscopy and theoretical simulations. We find that the photogenerated electron transfer is greatly dependent on the type and concentration of defects. The location and occupation of defect states, and the dispersion degree of the energy band should be carefully tuned to maximize the advantages of defects for photocatalytic reactions.

20.
Acc Chem Res ; 54(4): 1001-1010, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539066

RESUMEN

Recent advances in fluorescence microscopy allow us to track chemical reactions at the single-molecule level. Single-molecule measurements make it possible to minimize the amount of sample needed for analysis and diagnosis. Signal amplification is often applied to ultralow-level biomarker detection. Polymerase chain reaction (PCR) is used to detect DNA/RNA, and enzyme-linked immunosorbent assay (ELISA) can sensitively probe antigen-antibody interactions. While these techniques are brilliant and will continue to be used in the future, single-molecule-level measurements would allow us to reduce the time and cost needed to amplify signals.The kinetics of chemical reactions have been studied mainly using ensemble-averaged methods. However, they can hardly distinguish time-dependent fluctuations and static heterogeneity of the kinetics. The information hidden in ensemble-averaged measurements would be extractable from a single-molecule experiment. Thus, single-molecule measurement would provide unique opportunities to investigate unrevealed phenomena and to elucidate the questions in chemistry, physics, and life sciences. Redox reaction, which is triggered by electron transfer, is among the most fundamental and ubiquitous chemical reactions. The redox reaction of a fluorescent molecule results in the formation of radical ions, which are normally nonemissive. In single-molecule-level measurements, the redox reaction causes the fluctuation of fluorescence signals between the bright ON-state and the dark OFF-state, in a phenomenon called blinking. The duration of the OFF-state (τOFF) corresponds to the lifetime of the radical ion state, and its reaction kinetics can be measured as 1/τOFF. Thus, the kinetics of redox reactions of fluorescent molecules can be accessed at the single-molecule level by monitoring fluorescence blinking. One of the key aspects of single-molecule analysis based on blinking is its robustness. A blinking signal with a certain regular pattern enables single fluorescent molecules to be distinguished and resolved from the random background signal.In this Account, we summarize the recent studies on the single-molecule measurement of redox reaction kinetics, with a focus on our group's recent progress. We first introduce the control of redox blinking to increase the photostability of fluorescent molecules. We then demonstrate the control of redox blinking, which allows us to detect target DNA by monitoring the function of a molecular beacon-type probe, and we investigate antigen-antibody interactions at the single-molecule level. By tracing the time-dependent changes in blinking patterns, redox blinking is shown to be adaptable to tracking the structural switching dynamics of RNA, the preQ1 riboswitch. This Account ends with a discussion of our ongoing work on the control of fluorescent blinking. We also discuss the development of devices that allow single-molecule-level analysis in a high-throughput fashion.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Reacciones Antígeno-Anticuerpo , ADN/química , Cinética , Oxidación-Reducción , Pirimidinonas/química , Pirroles/química , ARN/química , Rodaminas/química , Rodaminas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...