Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 38(45): 9679-9688, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30249803

RESUMEN

Observing mouth movements has strikingly effects on the perception of speech. Any mismatch between sound and mouth movements will result in listeners perceiving illusory consonants (McGurk effect), whereas matching mouth movements assist with the correct recognition of speech sounds. Recent neuroimaging studies have yielded evidence that the motor areas are involved in speech processing, yet their contributions to multisensory illusion remain unclear. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in an event-related design, we aimed to identify the functional roles of the motor network in the occurrence of multisensory illusion in female and male brains. fMRI showed bilateral activation of the inferior frontal gyrus (IFG) in audiovisually incongruent trials. Activity in the left IFG was negatively correlated with occurrence of the McGurk effect. The effective connectivity between the left IFG and the bilateral precentral gyri was stronger in incongruent than in congruent trials. The McGurk effect was reduced in incongruent trials by applying single-pulse TMS to motor cortex (M1) lip areas, indicating that TMS facilitates the left IFG-precentral motor network to reduce the McGurk effect. TMS of the M1 lip areas was effective in reducing the McGurk effect within the specific temporal range from 100 ms before to 200 ms after the auditory onset, and TMS of the M1 foot area did not influence the McGurk effect, suggesting topographical specificity. These results provide direct evidence that the motor network makes specific temporal and topographical contributions to the processing of multisensory integration of speech to avoid illusion.SIGNIFICANCE STATEMENT The human motor network, including the inferior frontal gyrus and primary motor cortex lip area, appears to be involved in speech perception, but the functional contribution to the McGurk effect is unknown. Functional magnetic resonance imaging revealed that activity in these areas of the motor network increased when the audiovisual stimuli were incongruent, and that the increased activity was negatively correlated with perception of the McGurk effect. Furthermore, applying transcranial magnetic stimulation to the motor areas reduced the McGurk effect. These two observations provide evidence that the motor network contributes to the avoidance of multisensory illusory perception.


Asunto(s)
Percepción Auditiva/fisiología , Ilusiones/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Distribución Aleatoria , Percepción del Habla/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto Joven
2.
J Cogn Neurosci ; 30(3): 307-318, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29131745

RESUMEN

Having chosen an item typically increases the subjective value of the chosen item, and people generally enjoy making choices from larger choice sets. However, having too many items to choose from can reduce the value of chosen items-for example, because of conflict or choice difficulty. In this study, we investigated the effects of choice set size on behavioral and neural value updating (revaluation) of the chosen item. In the scanner, participants selected items from choice sets of various sizes (one, two, four, or eight items). After they chose an item, participants rerated the chosen item, and we quantified revaluation by taking the difference of postchoice minus prechoice ratings. Revaluation of chosen items increased up to choice sets of four alternatives but then decreased again for items chosen from choice sets of eight alternatives, revealing both a linear and a quadratic effect of choice set size. At the time of postchoice rating, activation of the ventrolateral pFC (VLPFC) reflected the influence of choice set size on parametric revaluation, without significant relation to either prechoice or postchoice ratings tested separately. Additional analyses revealed relations of choice set size to anterior cingulate and insula activity during actual choice and increased coupling of both regions to revaluation-related VLPFC during postchoice rating. These data suggest that the VLPFC plays a central role in a network that relates choice set size to updating the value of chosen items and integrates choice overload with value-enhancing effects of larger choice sets.


Asunto(s)
Conducta de Elección/fisiología , Corteza Prefrontal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven
3.
J Neurophysiol ; 110(8): 1915-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23864380

RESUMEN

Humans and animals value the opportunity to choose by preferring alternatives that offer more rather than fewer choices. This preference for choice may arise not only from an increased probability of obtaining preferred outcomes but also from the freedom it provides. We used human neuroimaging to investigate the neural basis of the preference for choice as well as for the items that could be chosen. In each trial, participants chose between two options, a monetary amount option and a "choice option." The latter consisted of a number that corresponded to the number of everyday items participants would subsequently be able to choose from. We found that the opportunity to choose from a larger number of items was equivalent to greater amounts of money, indicating that participants valued having more choice; moreover, participants varied in the degree to which they valued having the opportunity to choose, with some valuing it more than the increased probability of obtaining preferred items. Neural activations in the mid striatum increased with the value of the opportunity to choose. The same region also coded the value of the items. Conversely, activation in the dorsolateral striatum was not related to the value of the items but was elevated when participants were offered more choices, particularly in those participants who overvalued the opportunity to choose. These data suggest a functional dissociation of value representations within the striatum, with general representations in mid striatum and specific representations of the value of freedom provided by the opportunity to choose in dorsolateral striatum.


Asunto(s)
Conducta de Elección , Cuerpo Estriado/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino
4.
J Neurophysiol ; 101(6): 3284-93, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19339460

RESUMEN

Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo/fisiología , Castigo , Recompensa , Adulto , Conducta de Elección/fisiología , Femenino , Giro del Cíngulo/irrigación sanguínea , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Adulto Joven
5.
Neuroimage ; 44(3): 1163-70, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18992349

RESUMEN

People experience relief whenever outcomes are better than they would have been, had an alternative course of action been chosen. Here we investigated the neuronal basis of relief with functional resonance imaging in a choice task in which the outcome of the chosen option and that of the unchosen option were revealed sequentially. We found parametric activation increases in anterior ventrolateral prefrontal cortex with increasing relief (chosen outcomes better than unchosen outcomes). Conversely, anterior ventrolateral prefrontal activation was unrelated to the opposite of relief, increasing regret (chosen outcomes worse than unchosen outcomes). Furthermore, the anterior ventrolateral prefrontal activation was unrelated to primary gains and increased with relief irrespective of whether the chosen outcome was a loss or a gain. These results suggest that the anterior ventrolateral prefrontal cortex encodes a higher-order reward signal that lies at the core of current theories of emotion.


Asunto(s)
Conducta de Elección/fisiología , Potenciales Evocados/fisiología , Felicidad , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/fisiología , Recompensa , Adulto , Femenino , Humanos , Masculino
6.
Eur J Neurosci ; 27(6): 1547-52, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18336572

RESUMEN

A negative outcome can have motivational and emotional consequences on its own (absolute loss) or in comparison to alternative, better, outcomes (relative loss). The consequences of incurring a loss are moderated by personality factors such as neuroticism and introversion. However, the neuronal basis of this moderation is unknown. Here we investigated the neuronal basis of loss processing and personality with functional magnetic resonance imaging in a choice task. We separated absolute and relative financial loss by sequentially revealing the chosen and unchosen outcomes. With increasing neuroticism, activity in the left lateral orbitofrontal cortex (OFC) preferentially reflected relative rather than absolute losses. Conversely, with increasing introversion, activity in the right lateral OFC preferentially reflected absolute rather than relative losses. These results suggest that personality affects loss-related processing through the lateral OFC, and propose a dissociation of personality dimension and loss type on the neuronal level.


Asunto(s)
Emociones/fisiología , Lóbulo Frontal/fisiología , Personalidad/fisiología , Adulto , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...