Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Blood ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900972

RESUMEN

X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase, ALAS2, which encodes the first enzyme in heme biosynthesis. A related sideroblastic anemia is due to mutations in SLC25A38, which supplies mitochondrial glycine for ALAS2 (SLC25A38-CSA). The lack of viable animal models has limited studies on the pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knock-in mouse models that recapitulate the main features of XLSA and XLPP, and, using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP porphyria, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ -thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis-related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.

2.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293057

RESUMEN

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α 2 γ 2 ) to adult hemoglobin (HbA: α 2 ß 2 ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a special role in DNA binding and γ-globin gene repression. Our findings help account for some rare γ-globin gene promoter mutations that perturb BCL11A binding and lead to increased HbF in adults (hereditary persistence of fetal hemoglobin). Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

3.
Nat Commun ; 14(1): 7978, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042929

RESUMEN

PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.


Asunto(s)
Mucosa Gástrica , Estómago , Ratones , Animales , Células Madre , Intestinos , Antro Pilórico , Proteínas Tirosina Quinasas Receptoras , Células Epiteliales
4.
Sci Rep ; 13(1): 16249, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758931

RESUMEN

Ceramide, the central molecule in sphingolipid synthesis, is a bioactive lipid that serves as a regulatory molecule in the anti-inflammatory responses, apoptosis, programmed necrosis, autophagy, and cell motility of cancer cells. In particular, the authors have reported differences in sphingolipid content in colorectal cancer tissues. The associations among genetic mutations, clinicopathological factors, and sphingolipid metabolism in colorectal cancer (CRC) have not been investigated. The objective of this study is to investigate the association between genes associated with sphingolipid metabolism, genetic variations in colorectal cancer (CRC), and clinicopathological factors in CRC patients. We enrolled 82 consecutive patients with stage I-IV CRC who underwent tumor resection at a single institution in 2019-2021. We measured the expression levels of genes related to sphingolipid metabolism and examined the relationships between CRC gene mutations and the clinicopathological data of each individual patient. The relationship between CRC gene mutations and expression levels of ceramide synthase (CERS), N-acylsphingosine amidohydrolase (ASAH), and alkaline ceramidase (ACER) genes involved in sphingolipid metabolism was examined CRES4 expression was significantly lower in the CRC KRAS gene mutation group (p = 0.004); vascular invasion was more common in colorectal cancer patients with high CERS4 expression (p = 0.0057). By examining the correlation between sphingolipid gene expression and clinical factors, we were able to identify cancer types in which sphingolipid metabolism is particularly relevant. CERS4 expression was significantly reduced in KRAS mutant CRC. Moreover, CRC with decreased CERS4 showed significantly more frequent venous invasion.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Regulación hacia Abajo , Neoplasias Colorrectales/patología , Esfingolípidos/metabolismo , Mutación
5.
Blood Adv ; 7(18): 5281-5293, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37428871

RESUMEN

CRISPR/Cas9 screening approaches are powerful tool for identifying in vivo cancer dependencies. Hematopoietic malignancies are genetically complex disorders in which the sequential acquisition of somatic mutations generates clonal diversity. Over time, additional cooperating mutations may drive disease progression. Using an in vivo pooled gene editing screen of epigenetic factors in primary murine hematopoietic stem and progenitor cells (HSPCs), we sought to uncover unrecognized genes that contribute to leukemia progression. We, first, modeled myeloid leukemia in mice by functionally abrogating both Tet2 and Tet3 in HSPCs, followed by transplantation. We, then, performed pooled CRISPR/Cas9 editing of genes encoding epigenetic factors and identified Pbrm1/Baf180, a subunit of the polybromo BRG1/BRM-associated factor SWItch/Sucrose Non-Fermenting chromatin-remodeling complex, as a negative driver of disease progression. We found that Pbrm1 loss promoted leukemogenesis with a significantly shortened latency. Pbrm1-deficient leukemia cells were less immunogenic and were characterized by attenuated interferon signaling and reduced major histocompatibility complex class II (MHC II) expression. We explored the potential relevance to human leukemia by assessing the involvement of PBRM1 in the control of interferon pathway components and found that PBRM1 binds to the promoters of a subset of these genes, most notably IRF1, which in turn regulates MHC II expression. Our findings revealed a novel role for Pbrm1 in leukemia progression. More generally, CRISPR/Cas9 screening coupled with phenotypic readouts in vivo has helped identify a pathway by which transcriptional control of interferon signaling influences leukemia cell interactions with the immune system.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Unión al ADN , Leucemia Mieloide , Factores de Transcripción , Animales , Humanos , Ratones , Progresión de la Enfermedad , Edición Génica , Leucemia Mieloide/genética , Mutación , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
6.
J Insect Physiol ; 148: 104534, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37364813

RESUMEN

Cerambycid beetles form a chamber to spend their pupal stages in various forms according to the species. The red-necked longhorn beetle Aromia bungii (Coleoptera: Cerambycidae), which is an invasive pest that severely damages Rosaceae trees, makes a pupal chamber at the end of a tunnel deep in the xylem. Beetle larvae and the closely related species form a calcareous lid at the entrance of a pupal chamber. Previous studies on the closely related species conducted more than a century ago suggested that Malpighian tubules (MTs) play a vital role in calcium carbonate accumulation. However, the association between this Ca2+ accumulation and pupal chamber lid formation utilizing the possible calcium compounds stored in MTs have not yet been demonstrated. First, we artificially reared A. bungii larvae from eggs in host branches for 100 days and identified the larval developmental status and pupal chamber formation, using X-ray computed tomography. Second, we collected larvae from the branches and observed the internal organs by direct dissection under a microscope. Finally, we analyzed the elemental distribution, particularly calcium, in the larval gut with MTs, using energy dispersive X-ray fluorescence. The results suggest that immature larvae of A. bungii can accumulate Ca2+ in the MTs through wood tunneling and feeding activities. Ca2+ was stored at the proximal regions in two of the six MTs located posteriorly in the body. Additionally, larvae that formed a calcareous lid at the entrance of pupal chambers in the branches did not store Ca2+ in the MTs, suggesting that the larvae of A. bungii used the stored Ca2+ in their MTs for lid formation.


Asunto(s)
Calcio , Escarabajos , Animales , Túbulos de Malpighi , Madera , Pupa , Óvulo , Larva
7.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386251

RESUMEN

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Asunto(s)
Parálisis Facial , Animales , Ratones , Parálisis Facial/genética , Parálisis Facial/congénito , Parálisis Facial/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas Eferentes
8.
bioRxiv ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36798304

RESUMEN

PDGFRA-expressing mesenchyme provides a niche for intestinal stem cells. Corresponding compartments are unknown in the stomach, where corpus and antral glandular epithelia have similar niche dependencies but are structurally distinct from the intestine and from each other. Previous studies considered antrum and corpus as a whole and did not assess niche functions. Using high-resolution imaging and sequencing, we identify regional subpopulations and niche properties of purified mouse corpus and antral PDGFRA + cells. PDGFRA Hi sub-epithelial myofibroblasts are principal sources of BMP ligands in both gastric segments; two molecularly distinct groups distribute asymmetrically along antral glands but together fail to support epithelial organoids in vitro . In contrast, strategically positioned PDGFRA Lo cells that express CD55 enable corpus and antral organoid growth in the absence of other cellular or soluble factors. Our study provides detailed insights into spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for stem cell support.

9.
Cell Chem Biol ; 29(8): 1273-1287.e8, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35839780

RESUMEN

Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for ß-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.


Asunto(s)
Proteínas Nucleares , Proteoma , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
10.
Angew Chem Int Ed Engl ; 61(25): e202202779, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35411582

RESUMEN

We describe a concise and reliable protocol for the precisely controlled tetradeuteration of straight-chain fatty acids (FAs) at the α- and ß-positions that is generally applicable to a variety of FAs, including trans-FAs, polyunsaturated FAs (PUFAs), and their oxidized derivatives. The precisely controlled introduction of four deuterium atoms into the FAs enables their persistent and quantitative tracking by LC-MS/MS analysis based on their molecular structures. In addition, the phosphatidylcholine (PC) species prepared from the tetradeuterated FAs thus obtained give a diagnostic peak, namely, a phosphocholine fragment that contains deuterium, in the LC-MS/MS analysis. With these features, the metabolism of a representative oxidized linoleic acid, that is, hydroxyoctadecadienoic acid (HODE), was investigated, leading to the identification of acyltransferases that transfer the acyl moiety derived from HODE to lysophosphatidylcholine.


Asunto(s)
Ácidos Grasos , Ácido Linoleico , Cromatografía Liquida , Deuterio , Ácidos Linoleicos/química , Espectrometría de Masas en Tándem
11.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445349

RESUMEN

Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.


Asunto(s)
Adrenoleucodistrofia/metabolismo , Fibroblastos/metabolismo , Glicoesfingolípidos/metabolismo , Adrenoleucodistrofia/patología , Biopsia , Estudios de Casos y Controles , Células Cultivadas , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Femenino , Fibroblastos/patología , Glicoesfingolípidos/química , Humanos , Masculino , Piel/metabolismo , Piel/patología
12.
BMC Health Serv Res ; 21(1): 274, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766027

RESUMEN

BACKGROUND: This study aimed to explore associations between various elements of primary care, patient satisfaction, and loyalty. METHODS: This cross-sectional study used a modified version of the Primary Care Assessment Tool (PCAT), which was adapted for Japan. We distributed the PCAT questionnaire to patients aged 20 years or older at five rural primary care centres in Japan. We confirmed the validity and reliability of the measure for our study. Next, we examined which elements of primary care were related to patient satisfaction and loyalty using Spearman's correlation and structural equation modelling. RESULTS: Of 220 eligible patients, 206 participated in this study. We developed nine component scales: first contact (regular access), first contact (urgent access), longitudinality, coordination, comprehensiveness (variety of care), comprehensiveness (risk prevention), comprehensiveness (health promotion), family-centeredness, and community orientation. Longitudinality and first contact (urgent access) were related with patient satisfaction. Longitudinality, first contact (regular access), and family-centeredness were related to patient loyalty. In the structural equation modelling analysis, two variables were significantly related to loyalty, namely a combined variable including longitudinality and first contact (regular access), along with family-centeredness. CONCLUSIONS: While a patient satisfaction model could not be distilled from the data, longitudinality, first contact (urgent access), and family-centeredness were identified as important elements for the cultivation of patient loyalty. This implies that primary care providers need to develop a deep understanding of patients' contexts and concerns and pay attention to their level of access to cultivate greater patient loyalty.


Asunto(s)
Satisfacción del Paciente , Atención Primaria de Salud , Adulto , Estudios Transversales , Humanos , Japón , Calidad de la Atención de Salud , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Adulto Joven
13.
Sci Rep ; 11(1): 6163, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731797

RESUMEN

Colorectal cancer (CRC) is a major cancer, and its precise diagnosis is especially important for the development of effective therapeutics. In a series of metabolome analyses, the levels of very long chain fatty acids (VLCFA) were shown to be elevated in CRC tissues, although the endogenous form of VLCFA has not been fully elucidated. In this study we analyzed the amount of nonesterified fatty acids, acyl-CoA species, phospholipids and neutral lipids such as cholesterylesters using liquid-chromatography-mass spectrometry. Here we showed that VLCFA were accumulated in triacylglycerol (TAG) and nonesterified forms in CRC tissues. The levels of TAG species harboring a VLCFA moiety (VLCFA-TAG) were significantly correlated with that of nonesterified VLCFA. We also showed that the expression level of elongation of very long-chain fatty acids protein 1 (ELOVL1) is increased in CRC tissues, and the inhibition of ELOVL1 decreased the levels of VLCFA-TAG and nonesterified VLCFA in CRC cell lines. Our results suggest that the upregulation of ELOVL1 contributes to the accumulation of VLCFA-TAG and nonesterified VLCFA in CRC tissues.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Triglicéridos/metabolismo , Células HCT116 , Células HEK293 , Humanos , Metabolismo de los Lípidos
14.
Cancer Res ; 81(2): 489-500, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33293429

RESUMEN

The transcription factor E74-like factor 3 (ELF3) is inactivated in a range of cancers, including biliary tract cancer (BTC). Here, we investigated the tumor-suppressive role of ELF3 in bile duct cells by identifying several previously unknown direct target genes of ELF3 that appear to be implicated in biliary duct carcinogenesis. ELF3 directly repressed ZEB2, a key regulator of epithelial-mesenchymal transition, and upregulated the expression of CGN, an integral element in lumen formation. Loss of ELF3 led to decreased cell-cell junctions and enhanced cell motility. ALOX5 and CXCL16 were also identified as additional direct targets of ELF3; their corresponding proteins 5-lipoxygenase and CXCL16 play a role in the immune response. Conditioned medium from cells overexpressing ELF3 significantly enhanced the migration of natural killer cells and CD8+ T cells toward the conditioned medium. Gene expression profiling for BTC expressing high levels of ELF3 revealed significant enrichment of the ELF3-related genes. In a BTC xenograft model, activation of ELF3 increased expression of ELF3-related genes, enhanced the tubular structure of the tumors, and led to a loss of vimentin. Overall, our results indicate that ELF3 is a key regulator of both epithelial integrity and immune responses in BTC. SIGNIFICANCE: Thease finding shows that ELF3 regulates epithelial integrity and host immune responses and functions as a tumor suppressor in biliary tract cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/489/F1.large.jpg.


Asunto(s)
Neoplasias del Sistema Biliar/patología , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Anciano , Animales , Apoptosis , Neoplasias del Sistema Biliar/genética , Neoplasias del Sistema Biliar/inmunología , Neoplasias del Sistema Biliar/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32870816

RESUMEN

In aging mice, osteoclast number increases in cortical bone but declines in trabecular bone, suggesting that different mechanisms underlie age-associated bone loss in these 2 compartments. Osteocytes produce the osteoclastogenic cytokine RANKL, encoded by Tnfsf11. Tnfsf11 mRNA increases in cortical bone of aged mice, suggesting a mechanism underlying the bone loss. To address this possibility, we aged mice lacking RANKL in osteocytes. Whereas control mice lost cortical bone between 8 and 24 months of age, mice lacking RANKL in osteocytes gained cortical bone during this period. Mice of both genotypes lost trabecular bone with age. Osteoclasts increased with age in cortical bone of control mice but not in RANKL conditional knockout mice. Induction of cellular senescence increased RANKL production in murine and human cell culture models, suggesting an explanation for elevated RANKL levels with age. Overexpression of the senescence-associated transcription factor Gata4 stimulated Tnfsf11 expression in cultured murine osteoblastic cells. Finally, elimination of senescent cells from aged mice using senolytic compounds reduced Tnfsf11 mRNA in cortical bone. Our results demonstrate the requirement of osteocyte-derived RANKL for age-associated cortical bone loss and suggest that increased Tnfsf11 expression with age results from accumulation of senescent cells in cortical bone.


Asunto(s)
Envejecimiento/patología , Resorción Ósea/patología , Senescencia Celular , Hueso Cortical/patología , Osteocitos/patología , Ligando RANK/fisiología , Envejecimiento/metabolismo , Animales , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Hueso Cortical/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(35): 21450-21458, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817427

RESUMEN

How overall principles of cell-type-specific gene regulation (the "logic") may change during ontogeny is largely unexplored. We compared transcriptomic, epigenomic, and three-dimensional (3D) genomic profiles in embryonic (EryP) and adult (EryD) erythroblasts. Despite reduced chromatin accessibility compared to EryP, distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb occupancy. EryP-/EryD-shared enhancers are highly correlated with red blood cell identity genes, whereas cell-type-specific regulation employs different cis elements in EryP and EryD cells. In contrast to EryP-specific genes, which exhibit promoter-centric regulation through Gata1, EryD-specific genes rely more on distal enhancers for regulation involving Myb-mediated enhancer activation. Gata1 HiChIP demonstrated an overall increased enhancer-promoter interactions at EryD-specific genes, whereas genome editing in selected loci confirmed distal enhancers are required for gene expression in EryD but not in EryP. Applying a metric for enhancer dependence of transcription, we observed a progressive reliance on cell-specific enhancers with increasing ontogenetic age among diverse tissues of mouse and human origin. Our findings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type-specific genes in embryonic cells and increased combinatorial enhancer-driven control in adult cells.


Asunto(s)
Factores de Edad , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Cromatina , Elementos de Facilitación Genéticos/genética , Eritroblastos , Eritropoyesis/fisiología , Femenino , Expresión Génica , Genómica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética
18.
Cell ; 181(6): 1410-1422.e27, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32413320

RESUMEN

Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.


Asunto(s)
Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Transcriptoma/genética , Animales , Línea Celular , Femenino , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Transducción Genética/métodos
19.
Stem Cell Reports ; 14(5): 956-971, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302558

RESUMEN

Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.


Asunto(s)
Antígenos Ly/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Genes Reporteros , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/genética , Transcriptoma , Animales , Antígenos Ly/metabolismo , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/metabolismo , Ratones , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual
20.
Carbohydr Res ; 490: 107959, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32120021

RESUMEN

Glycosphingolipids (GSLs) exist exclusively in the outer leaflet of plasma membrane in mammalian cells and have diverse structures including different classes of sugars and various molecular species of ceramide moieties. Establishing methods that measure each molecular species in GSL classes should aid functional characterization of GSLs and reveal details about the mechanism of pathogenesis in glycosphingolipidoses. Using an IF-3 chiral column that has never been used for lipid analyses, we developed a liquid chromatography-mass spectrometry (LC-MS) method to separate various GSLs based on sugar and ceramide moieties. To examine GSLs in detail a multichannel-multiple reaction monitoring (multichannel-MRM) mode was used and covered a range of 500-2000 Da. Common fragment ions detected with higher collision energy in the positive ion mode were m/z 264 and 292, and are derived from d18:1 and d20:1 ions, respectively. Both species were used as product ions in the multichannel-MRM for the simultaneous measurement of neutral GSLs, gangliosides and sulfatides. Comprehensive analysis of GSLs in mouse brain using this method revealed that for gangliosides and LacCer, d18:1-C18:0 and d20:1-C18:0 were the major molecular species, whereas d18:1-C24:0 and d18:1-C24:1 were the major molecular species of sulfatides. The results revealed a diverse GSL fatty acid profile. In conclusion, by combining IF-3 chiral column and the multichannel-MRM method various molecular species of GSLs were detected successfully, and a metabolomics approach based on this LC-MS method should facilitate functional analysis of GSLs and the discovery of early biomarkers of glycosphingolipidoses at the molecular level.


Asunto(s)
Encéfalo/metabolismo , Glicoesfingolípidos/análisis , Animales , Química Encefálica , Cromatografía Liquida , Glicoesfingolípidos/química , Espectrometría de Masas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA