Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Angew Chem Int Ed Engl ; : e202402922, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581637

RESUMEN

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.

2.
Chem Commun (Camb) ; 60(29): 3946-3949, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38497901

RESUMEN

We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Receptor Toll-Like 1 , Anticuerpos Antivirales , COVID-19/prevención & control , Ligandos , Adyuvantes Inmunológicos/farmacología
3.
ACS Cent Sci ; 10(2): 447-459, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38435526

RESUMEN

Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but can also cause local or systemic diseases. Serine-rich repeat (SRR) glycoproteins exposed on the S. gordonii bacterial surface bind to sialylated glycans on human salivary, plasma, and platelet glycoproteins, which may contribute to oral colonization as well as endocardial infections. Despite a conserved overall domain organization of SRR adhesins, the Siglec-like binding regions (SLBRs) are highly variable, affecting the recognition of a wide range of sialoglycans. SLBR-N from the SRR glycoprotein of S. gordonii UB10712 possesses the remarkable ability to recognize complex core 2 O-glycans. We here employed a multidisciplinary approach, including flow cytometry, native mass spectrometry, isothermal titration calorimetry, NMR spectroscopy from both protein and ligand perspectives, and computational methods, to investigate the ligand specificity and binding preferences of SLBR-N when interacting with mono- and disialylated core 2 O-glycans. We determined the means by which SLBR-N preferentially binds branched α2,3-disialylated core 2 O-glycans: a selected conformation of the 3'SLn branch is accommodated into the main binding site, driving the sTa branch to further interact with the protein. At the same time, SLBR-N assumes an open conformation of the CD loop of the glycan-binding pocket, allowing one to accommodate the entire complex core 2 O-glycan. These findings establish the basis for the generation of novel tools for the detection of specific complex O-glycan structures and pave the way for the design and development of potential therapeutics against streptococcal infections.

4.
Phytochemistry ; 220: 114009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342289

RESUMEN

Seven previously undescribed preurianin-type limonoids, namely paraxylines A-G, and three known analogs were isolated from stem bark of Dysoxylum parasiticum. The structures, including absolute configurations, were established through spectroscopic analyses, quantum chemical calculations using the density functional theory method, as well as the DP4+ algorithm. Paraxylines A-G were identified as the first preurianin-type with full substitution at C, D-rings, leading to the highly oxygenated seco-limonoids skeleton. The secreted alkaline phosphate assay against an engineered human and murine TLR4 of HEK-Blue cells was performed to evaluate the immune regulating effects. Among them, paraxyline B was found to be a remarkable TLR4 agonist whereas two analogs (toonapubesins A and B) were found to antagonise lipopolysaccharide stimulation of the TLR4 pathway. Paraxylines A and C-E acted either as agonists or antagonists depending on the origin of the TLR4 receptor (human or mouse). The effect of these selected compounds on the expression of pro-inflammatory cytokines TNF-α, IL-1α, IL-1ß, and IL-6 of the NF-κB signaling pathway were examined in macrophage cell lines, revealing dose-dependent effects. Additionally, paraxylines A, C, D, and G also presented modest cytotoxic activity against MCF-7 and HeLa cell lines with IC50 values ranging from 23.1 to 43.5 µM.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Limoninas , Meliaceae , Humanos , Animales , Ratones , Limoninas/farmacología , Limoninas/química , Receptor Toll-Like 4 , Células HeLa , Corteza de la Planta/química , Estructura Molecular , Antineoplásicos Fitogénicos/química , Meliaceae/química
5.
Curr Issues Mol Biol ; 46(1): 909-922, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275672

RESUMEN

Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the anti-inflammatory effects and underlying mechanisms of action of the constituents of Chisocheton plants have not been fully explored. In this report, we evaluated the anti-inflammatory activity of 17 limonoid compounds from Chisocheton plant primarily by measuring their inhibitory effects on the production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, and MCP-1, in LPS-stimulated THP-1 cells using an ELISA assay. Compounds 3, 5, 9, and 14-17 exhibited significant activity in inhibiting the evaluated pro-inflammatory markers, with IC50 values less than 20 µM and a high selectivity index (SI) range. Compounds 3, 5, 9, and 15 significantly suppressed the expression of phosphorylated p38 MAPK in THP-1 cells stimulated with LPS. These findings support the use of limonoids from Chisocheton plants as promising candidates for anti-inflammatory therapy.

6.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256007

RESUMEN

Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Radioisótopos , Humanos , Masculino , Semivida , Medicina Nuclear , Neoplasias de la Próstata/tratamiento farmacológico , Radioisótopos/uso terapéutico
7.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38006376

RESUMEN

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Asunto(s)
Alcaligenes , Lípido A , Animales , Ratones , Lípido A/farmacología , Adyuvantes Inmunológicos/farmacología , Células Dendríticas
8.
Front Chem ; 11: 1319883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116104

RESUMEN

The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.

9.
Nat Cell Biol ; 25(12): 1860-1872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973841

RESUMEN

Intracellular surveillance for systemic microbial components during homeostasis and infections governs host physiology and immunity. However, a long-standing question is how circulating microbial ligands become accessible to intracellular receptors. Here we show a role for host-derived extracellular vesicles (EVs) in this process; human and murine plasma-derived and cell culture-derived EVs have an intrinsic capacity to bind bacterial lipopolysaccharide (LPS). Remarkably, circulating host EVs capture blood-borne LPS in vivo, and the LPS-laden EVs confer cytosolic access for LPS, triggering non-canonical inflammasome activation of gasdermin D and pyroptosis. Mechanistically, the interaction between the lipid bilayer of EVs and the lipid A of LPS underlies EV capture of LPS, and the intracellular transfer of LPS by EVs is mediated by CD14. Overall, this study demonstrates that EVs capture and escort systemic LPS to the cytosol licensing inflammasome responses, uncovering EVs as a previously unrecognized link between systemic microbial ligands and intracellular surveillance.


Asunto(s)
Vesículas Extracelulares , Inflamasomas , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Lipopolisacáridos , Caspasas/metabolismo , Piroptosis , Citosol , Vesículas Extracelulares/metabolismo
10.
Chem Commun (Camb) ; 59(90): 13510-13513, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37885305

RESUMEN

Sequential peptide coupling plays a central role in chemical protein synthesis. This paper describes a new peptide derivative, peptide-aminothiazoline (At), whereof the C-terminus is functionalized with 2-aminothiazoline. Peptide-At streamlined the sequential peptide ligation in a one-pot manner and demonstrated the convergent synthesis of a circular protein and homogeneous glycoproteins.


Asunto(s)
Glicoproteínas , Péptidos
11.
12.
J Nucl Med ; 64(12): 1949-1955, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827841

RESUMEN

Glypican-1 (GPC1) is overexpressed in several solid cancers and is associated with tumor progression, whereas its expression is low in normal tissues. This study aimed to evaluate the potential of an anti-GPC1 monoclonal antibody (GPC1 mAb) labeled with 89Zr or 211At as a theranostic target in pancreatic ductal adenocarcinoma. Methods: GPC1 mAb clone 01a033 was labeled with 89Zr or 211At with a deferoxamine or decaborane linker, respectively. The internalization ability of GPC1 mAb was evaluated by fluorescence conjugation using a confocal microscope. PANC-1 xenograft mice (n = 6) were intravenously administered [89Zr]GPC1 mAb (0.91 ± 0.10 MBq), and PET/CT scanning was performed for 7 d. Uptake specificity was confirmed through a comparative study using GPC1-positive (BxPC-3) and GPC1-negative (BxPC-3 GPC1-knockout) xenografts (each n = 3) and a blocking study. DNA double-strand breaks were evaluated using the γH2AX antibody. The antitumor effect was evaluated by administering [211At]GPC1 mAb (∼100 kBq) to PANC-1 xenograft mice (n = 10). Results: GPC1 mAb clone 01a033 showed increased internalization ratios over time. One day after administration, a high accumulation of [89Zr]GPC1 mAb was observed in the PANC-1 xenograft (SUVmax, 3.85 ± 0.10), which gradually decreased until day 7 (SUVmax, 2.16 ± 0.30). The uptake in the BxPC-3 xenograft was significantly higher than in the BxPC-3 GPC1-knockout xenograft (SUVmax, 4.66 ± 0.40 and 2.36 ± 0.36, respectively; P = 0.05). The uptake was significantly inhibited in the blocking group compared with the nonblocking group (percentage injected dose per gram, 7.3 ± 1.3 and 12.4 ± 3.0, respectively; P = 0.05). DNA double-strand breaks were observed by adding 150 kBq of [211At]GPC1 and were significantly suppressed by the internalization inhibitor (dynasore), suggesting a substantial contribution of the internalization ability to the antitumor effect. Tumor growth suppression was observed in PANC-1 mice after the administration of [211At]GPC1 mAb. Internalization inhibitors (prochlorperazine) significantly inhibited the therapeutic effect of [211At]GPC1 mAb, suggesting an essential role in targeted α-therapy. Conclusion: [89Zr]GPC1 mAb PET showed high tumoral uptake in the early phase after administration, and targeted α-therapy using [211At]GPC1 mAb showed tumor growth suppression. GPC1 is a promising target for future applications for the precise diagnosis of pancreatic ductal adenocarcinoma and GPC1-targeted theranostics.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Glipicanos/metabolismo , Tomografía de Emisión de Positrones , Medicina de Precisión , Tomografía Computarizada por Tomografía de Emisión de Positrones , Línea Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/terapia , ADN , Circonio
14.
Front Immunol ; 14: 1173728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492571

RESUMEN

Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Humanos , Animales , Ratones , Progesterona , Leucocitos Mononucleares
15.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298546

RESUMEN

Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody exhibited a superior effect compared to its conventional counterparts. This study paves the way for organelle-selective drug delivery.


Asunto(s)
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapéutico , Sistemas de Liberación de Medicamentos , Núcleo Celular , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
16.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37344812

RESUMEN

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Membrana Dobles de Lípidos , Antígenos , Adyuvantes Inmunológicos , Péptidos
17.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240044

RESUMEN

Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.


Asunto(s)
Fibroblastos , Polietilenglicoles , Humanos , Animales , Ratones , Células HEK293 , Piperazina/farmacología , Polietilenglicoles/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Galio
18.
Angew Chem Int Ed Engl ; 62(30): e202304779, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37083035

RESUMEN

Antibody dynamics on membranes, such as endocytosis and clustering, are vital in determining antibody functions. In this study, we demonstrated that glycan conjugation can modulate antibody dynamics through the glycan-lectin interaction to regulate its potency. The anti-HER2 antibody, an anti-breast-cancer antibody, was conjugated with galactose-containing N-glycan, and its internalization was suppressed by interaction with galectin-3, leading to enhanced complement-dependent cytotoxic (CDC) activity. This glycan-antibody conjugate is proposed as a new approach to modulate antibody activity and may provide an alternative strategy for redeveloping antibody drugs that do not exhibit sufficient activity.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Lectinas , Polisacáridos
19.
Angew Chem Int Ed Engl ; 62(25): e202303750, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37042088

RESUMEN

We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.


Asunto(s)
Anticuerpos , Polisacáridos , Polisacáridos/metabolismo , Membrana Celular/metabolismo , Ramnosa
20.
RSC Adv ; 13(14): 9370-9376, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36968060

RESUMEN

An asymmetrical true-dimeric cadinane via ketonic bridge [C-15/C-3'], dysotican F (1), two symmetrical pseudo-cadinane dimers through an O-ether linkage [C-3/C-3'], dysoticans G (2) and H (3), as well as three known sesquiterpenoids 4-6 were obtained from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae). Their structures were determined by spectroscopic and quantum chemical calculations of 13C NMR shifts using a GIAO method and electronic circular dichroism (ECD) using a TDDFT method. A possible biogenetic pathway for 1-3 beginning from the known compounds (i-ii) was proposed. Cytotoxic evaluation showed that 2 as a new lead compound is the most potent against the MCF-7 and HeLa cell lines with IC50 values of 12.07 ± 0.17 µM and 9.29 ± 0.33 µM, while 1 has moderate inhibition with IC50 values of 31.59 ± 0.34 µM and 27.93 ± 0.25 µM. Furthermore, 3 is a selective inhibitor against the HeLa cell growth with an IC50 value of 39.72 ± 0.18 µM. A brief structure-activity relationship analysis of all isolated compounds 1-6 was also provided, including comparison with the coexisting molecules in the previous report.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...