Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0418222, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943052

RESUMEN

Acanthamoeba castellanii medusavirus is a member of the phylum Nucleocytoviricota, also known as giant viruses, and has a unique strategy of infecting Acanthamoeba castellanii and replicating viral genes in the host nucleus. Here, we show time series changes in the intracellular morphology, including the nucleus, of host cells infected with four types of giant viruses, including medusavirus, using time-lapse phase-contrast microscopy and image analysis. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) to use multiple microscopic images with different focus positions to allow a more detailed analysis of their intracellular structures. Image analysis using PKA3 revealed that as medusavirus infection progressed, the host nucleus increased in size and the number of vacuoles decreased. In addition, infected host cells are known to become smaller and rounder at later stages of infection, but here they were found to be larger than uninfected cells at earlier stages. These results suggested that the propagation mechanism of medusavirus includes the formation of empty virus particles in the host cytoplasm, packaging of the viral genome replicated in the host nucleus, and then the release of viral particles. IMPORTANCE In this study, we quantitatively revealed how long the increase in host cell size or the increase in host nucleus size occurs after infection with giant viruses, especially medusavirus. To understand the underlying mechanism, we performed image analysis and determined that the host cell size increased at approximately 6 h postinfection (hpi) and the host nucleus enlarged at approximately 22 hpi, pointing to the importance of biochemical experiments. In addition, we showed that the intracellular structures could be quantitatively analyzed using multiple phase-contrast microscopy images with different focus positions at the same time point. Hence, morphological analyses of intracellular structures using phase-contrast microscopy, which have wide applications in live-cell observations, may be useful in studying various organisms that infect or are symbiotic with A. castellanii.

2.
Microbiol Spectr ; 9(1): e0036821, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431709

RESUMEN

Most virus-infected cells show morphological and behavioral changes, which are called cytopathic effects. Acanthamoeba castellanii, an abundant, free-living protozoan, serves as a laboratory host for some viruses of the phylum Nucleocytoviricota-the giant viruses. Many of these viruses cause cell rounding in the later stages of infection in the host cells. Here, we show the changes that lead to cell rounding in the host cells through time-lapse microscopy and image analysis. Time-lapse movies of A. castellanii cells infected with Mimivirus shirakomae, kyotovirus, medusavirus, or Pandoravirus japonicus were generated using a phase-contrast microscope. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) and used it to analyze these time-lapse movies. Image analysis revealed that the process leading to cell rounding varies among the giant viruses; for example, M. shirakomae infection did not cause changes for some time after the infection, kyotovirus infection caused an early decrease in the number of cells with typical morphologies, and medusavirus and P. japonicus infection frequently led to the formation of intercellular bridges and rotational behavior of host cells. These results suggest that in the case of giant viruses, the putative reactions of host cells against infection and the putative strategies of virus spread are diverse. IMPORTANCE Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii, which were previously unclear. It was revealed that medusavirus and Pandoravirus japonicus infection led to the formation of a significant number of elongated particles related to intercellular bridges, emphasizing the importance of research on the interaction of viruses with host cell nuclear function. Mimivirus shirakomae infection did not cause any changes in the host cells initially, so it is thought that the infected cells can actively move and spread over a wider area, emphasizing the importance of observation in a wider area and analysis of infection efficiency. These results suggest that a kinetic analysis using the phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) reveals the infection strategies of each giant virus.


Asunto(s)
Acanthamoeba castellanii/virología , Virus Gigantes/fisiología , Interacciones Microbiota-Huesped/fisiología , Acanthamoeba castellanii/genética , Virus ADN , Genoma Viral , Virus Gigantes/clasificación , Virus Gigantes/genética , Cinética , Mimiviridae/genética , Tamaño de la Partícula
3.
J Virol ; 95(18): e0091921, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34191583

RESUMEN

Since 2003, various viruses from the subfamily Megavirinae in the family Mimiviridae have been isolated worldwide, including icosahedral mimiviruses and tailed tupanviruses. To date, the evolutionary relationship between tailed and nontailed mimiviruses has not been elucidated. Here, we present the genomic and morphological features of a newly isolated giant virus, Cotonvirus japonicus (cotonvirus), belonging to the family Mimiviridae. It contains a linear double-stranded DNA molecule of 1.47 Mb, the largest among the reported viruses in the subfamily Megavirinae, excluding tupanviruses. Among its 1,306 predicted open reading frames, 1,149 (88.0%) were homologous to those of the family Mimiviridae. Several nucleocytoplasmic large DNA virus (NCLDV) core genes, aminoacyl-tRNA synthetase genes, and the host specificity of cotonvirus were highly similar to those of Mimiviridae lineages A, B, and C; however, lineage A was slightly closer to cotonvirus than the others were. Moreover, based on its genome size, the presence of two copies of 18S rRNA-like sequences, and the period of its infection cycle, cotonvirus is the most similar to the tupanviruses among the icosahedral mimiviruses. Interestingly, the cotonvirus utilizes Golgi apparatus-like vesicles for virion factory (VF) formation. Overall, we showed that cotonvirus is a novel lineage of the subfamily Megavirinae. Our findings support the diversity of icosahedral mimiviruses and provide mechanistic insights into the replication, VF formation, and evolution of the subfamily Megavirinae. IMPORTANCE We have isolated a new virus of an independent lineage belonging to the family Mimiviridae, subfamily Megavirinae, from the fresh water of a canal in Japan, named Cotonvirus. In a proteomic tree, this new nucleocytoplasmic large DNA virus (NCLDV) is phylogenetically placed at the root of three lineages of the subfamily Megavirinae-lineages A (mimivirus), B (moumouvirus), and C (megavirus). Multiple genomic and phenotypic features of cotonvirus are more similar to those of tupanviruses than to those of the A, B, or C lineages, and other genomic features, while the host specificity of cotonvirus is more similar to those of the latter than of the former. These results suggest that cotonvirus is a unique virus that has chimeric features of existing viruses of Megavirinae and uses Golgi apparatus-like vesicles of the host cells for virion factory (VF) formation. Thus, cotonvirus can provide novel insights into the evolution of mimiviruses and the underlying mechanisms of VF formation.


Asunto(s)
Acanthamoeba/virología , Linaje de la Célula , Genoma Viral , Aparato de Golgi/virología , Especificidad del Huésped , Mimiviridae/genética , Mimiviridae/ultraestructura , Acanthamoeba/clasificación , Evolución Molecular , Tamaño del Genoma , Microscopía Electrónica de Transmisión , Mimiviridae/clasificación , Mimiviridae/aislamiento & purificación , Filogenia , Virión
4.
Microbes Environ ; 36(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33612562

RESUMEN

Marseilleviridae is a family of large double-stranded DNA viruses that is currently divided into five subgroups, lineages A-E. Hokutovirus and kashiwazakivirus, both of which belong to lineage B, have been reported to induce host acanthamoeba cells to form aggregations called "bunches". This putatively results in increased opportunities to infect acanthamoeba cells, in contrast to lineage A, which has been reported to not form "bunches". In the present study, we isolated 14 virus strains of the family Marseilleviridae from several Japanese water samples, 11 of which were identified as lineage B viruses. All 11 lineage B strains caused infected amoeba cells to form bunches. We then investigated the involvement of monosaccharides in bunch formation by amoeba cells infected with hokutovirus. Galactose inhibited bunch formation, thereby allowing amoeba cells to delay the process, whereas mannose and glucose did not. A kinetic image analysis of hokutovirus-infected amoeba cells confirmed the inhibition of bunch formation by galactose. The number of hokutovirus-infected amoeba cells increased more rapidly than that of tokyovirus-infected cells, which belongs to lineage A. This result suggests that bunch formation by infected amoeba cells is advantageous for lineage B viruses.


Asunto(s)
Virus ADN/clasificación , Galactosa/metabolismo , Acanthamoeba/virología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/metabolismo , Agua Dulce/virología , Japón , Filogenia
5.
Biochem Mol Biol Educ ; 47(4): 426-431, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31021444

RESUMEN

Several educational trials on handling viruses and or virology have been reported. However, given their small size, direct visualization of these viruses under a microscope has been rarely performed. The so-called "giant viruses" are larger than other viruses with a particle size greater than 200-300 nm. This enables their direct visualization under a light microscope more easily than other viruses. In this study, we developed two new types of teaching material for learning about viruses and cellular organisms using mimivirus, one of the well-known giant viruses. One teaching material involves using glass slides with enclosed mimivirus particles, and another is a paper-based teaching material, named VIRAMOS (http://tlab-edusys.azurewebsites.net/content/viramos_en.pdf). Using these, students can investigate and learn about viruses and cellular organisms. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):426-431, 2019.


Asunto(s)
Biología/educación , Visualización de Datos , Virus Gigantes/química , Microscopía , Virión/química , Humanos , Aprendizaje , Estudiantes , Enseñanza , Universidades
6.
Front Microbiol ; 10: 3014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038516

RESUMEN

Tracking cell motility is a useful tool for the study of cell physiology and microbiology. Although phase-contrast microscopy is commonly used, the existence of optical artifacts called "halo" and "shade-off" have inhibited image analysis of moving cells. Here we show kinetic image analysis of Acanthamoeba motility using a newly developed computer program named "Phase-contrast-based Kinetic Analysis Algorithm for Amoebae (PKA3)," which revealed giant-virus-infected amoebae-specific motilities and aggregation profiles using time-lapse phase-contrast microscopic images. This program quantitatively detected the time-dependent, sequential changes in cellular number, size, shape, and direction and distance of cell motility. This method expands the potential of kinetic analysis of cultured cells using versatile phase-contrast images. Furthermore, this program could be a useful tool for investigating detailed kinetic mechanisms of cell motility, not only in virus-infected amoebae but also in other cells, including cancer cells, immune response cells, and neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...