Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731665

RESUMEN

Aging is a time-dependent complex biological process of organisms with gradual deterioration of the anatomical and physiological functions. The role of gut microbiota is inevitable in the aging process. Probiotic interventions improve gut homeostasis and support healthy aging by enhancing beneficial species and microbial biodiversity in older adults. The present preliminary clinical trial delves into the impact of an 8-week Lactobacillus rhamnosus intervention (10 × 109 CFU per day) on the glycaemic index, lipid profile, and microbiome of elderly subjects. Body weight, body fat, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein, and low-density lipoprotein (LDL) are assessed at baseline (Week 0) and after treatment (Week 8) in placebo and probiotic groups. Gaussian regression analysis highlights a significant improvement in LDL cholesterol in the probiotic group (p = 0.045). Microbiome analysis reveals numeric changes in taxonomic abundance at various levels. At the phylum level, Proteobacteria increases its relative frequency (RF) from 14.79 ± 5.58 at baseline to 23.46 ± 8.02 at 8 weeks, though statistically insignificant (p = 0.100). Compared to the placebo group, probiotic supplementations significantly increased the proteobacteria abundance. Genus-level analysis indicates changes in the abundance of several microbes, including Escherichia-Shigella, Akkermansia, and Bacteroides, but only Butyricimonas showed a statistically significant level of reduction in its abundance. Probiotic supplementations significantly altered the Escherichia-Shigella and Sutterella abundance compared to the placebo group. At the species level, Bacteroides vulgatus substantially increases after probiotic treatment (p = 0.021). Alpha and beta diversity assessments depict subtle shifts in microbial composition. The study has limitations, including a small sample size, short study duration, single-strain probiotic use, and lack of long-term follow-up. Despite these constraints, the study provides valuable preliminary insights into the multifaceted impact of L. rhamnosus on elderly subjects. Further detailed studies are required to define the beneficial effect of L. rhamnosus on the health status of elderly subjects.

2.
Pharmaceuticals (Basel) ; 16(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37242478

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated the association between gut microbiota and diabetes development and probiotic supplementation in improving glycemic properties in T2DM. The study aimed to evaluate the influence of Bifidobacterium breve supplementation on glycemic control, lipid profile, and microbiome of T2DM subjects. Forty participants were randomly divided into two groups, and they received probiotics (50 × 109 CFU/day) or placebo interventions (corn starch; 10 mg/day) for 12 weeks. The changes in the blood-urea nitrogen (BUN), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), fasting blood sugar (FBS), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, and other factors such as body-mass index, visceral fat, body fat, and body weight were assessed at baseline and after 12 weeks. B. breve supplementation significantly reduced BUN, creatinine, LDL, TG, and HbA1c levels compared to the placebo group. Significant changes were observed in the microbiome of the probiotic-treated group compared to the placebo group. Firmicutes and proteobacteria were predominant in the placebo and probiotic-treated groups. Genera Streptococcus, Butyricicoccus, and species Eubacterium hallii were significantly reduced in the probiotic-treated group compared to the placebo. Overall results suggested that B. breve supplementation could prevent worsening of representative clinical parameters in T2DM subjects. The current study has limitations, including fewer subjects, a single probiotic strain, and fewer metagenomic samples for microbiome analysis. Therefore, the results of the current study require further validation using more experimental subjects.

3.
Foods ; 11(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35267392

RESUMEN

Urbanization influences our lifestyle, especially in fast-paced environments where we are more prone to stress. Stress management is considered advantageous in terms of longevity. The use of probiotics for psychological treatment has a small amount of diverse proven evidence to support this. However, studies on stress management in stressed subjects using synbiotics are still limited. The present study aimed to investigate the effects of synbiotics on stress in the Thai population. A total of 32 volunteers were enrolled and screened using a Thai Stress Test (TST) to determine their stress status. Participants were divided into the stressed and the non-stressed groups. Synbiotics preparation comprised a mixture of probiotics strains in a total concentration of 1 × 1010 CFU/day (5.0 × 109 CFU of Lactobacillus paracasei HII01 and 5.0 × 109 CFU of Bifidobacterium animalis subsp. lactis) and 10 g prebiotics (5 g galacto-oligosaccharides (GOS), and 5 g oligofructose (FOS)). All parameters were measured at baseline and after the 12th week of the study. In the stressed group, the administration of synbiotics significantly (p < 0.05) reduced the negative scale scores of TST, and tryptophan. In the non-stressed group, the synbiotics administration decreased tryptophan significantly (p < 0.05), whereas dehydroepiandrosterone sulfate (DHEA-S), tumor necrosis factor-α (TNF-α), 5-hydroxyindoleacetic acid (5-HIAA), and short-chain fatty acids (SCFAs), acetate and propionate were increased significantly (p < 0.05). In both groups, cortisol, and lipopolysaccharide (LPS) were reduced, whereas anti-inflammatory mediator interleukin-10 (IL-10) and immunoglobulin A (IgA) levels were increased. In conclusion, synbiotics administration attenuated the negative feelings via the negative scale scores of TST in stressed participants by modulating the HPA-axis, IL-10, IgA, and LPS. In comparison, synbiotics administration for participants without stress did not benefit stress status but showed remodeling SCFAs components, HPA-axis, and tryptophan catabolism.

4.
Foods ; 11(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35159419

RESUMEN

Intestinal integrity prevents the diffusion of allergens, toxins, and pathogens from the gastrointestinal lumen into the tissue and the circulatory system. Damage in intestinal integrity may cause mild to serious health issues, such as inflammation, gastrointestinal disorders, neurological diseases, and neurodegenerative disorders. Thus, maintaining a healthy intestinal barrier function is essential to sustain health. Probiotics are known for their ability to protect and restore intestinal permeability in vitro and in vivo. The multi-strain probiotics are more efficient than that of a single strain in terms of their protective efficacy. Therefore, the present study was planned and implemented to study the supplementation of probiotic mix (Lactobacillus paracasei HII01, Bifidobacteriumbreve, and Bifidobacterium longum) on intestinal permeability, lipid profile, obesity index and metabolic biomarkers in elderly Thai subjects. The results revealed that the supplementation of studied probiotics improved the intestinal barrier function (up to 48%), significantly increasing the high-density lipoprotein (HDL)-cholesterol. Moreover, the intervention improved obesity-related anthropometric biomarkers and short-chain fatty acid levels in human subjects. The current study strongly recommends further extended research to confirm the beneficial effect of probiotics, which may pave the way to formulate probiotic-based health supplements to adjuvant the treatment of several metabolic diseases.

5.
J Pharm Anal ; 8(1): 60-68, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29568669

RESUMEN

A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent, benzoyl peroxide as the initiator, and ethylene glycol dimethacrylate as the crosslinker. The effects of interaction on the adsorption capacity of the molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) were investigated. A comparison of the adsorption capacity for MIP and NIP indicated that the NIP had the lowest adsorption capacity. The curcuminoid-imprinted polymer (Cur-MIP) was synthesized from 0.0237 mmol of styrene, 47.0 g of acetonitrile, 1.0238 mmol of ethylene glycol dimethacrylate, 0.0325 mmol of curcuminoids, and 0.2480 mmol of benzoyl peroxide. A high-performance liquid chromatography method with fluorescence detection was developed and validated for various chromatographic conditions for the determination of the curcuminoids in turmeric samples. The sample solution was separated using the Cur-MIP via solid-phase extraction and analyzed on a Brownlee analytical C18 column (150 mm × 6 mm, 5 µm) using an isocratic elution consisting of acetonitrile and 0.1% trichloroacetic acid (40:60, v/v). The flow rate was maintained at 1.5 mL/min. The fluorescence detector was set to monitor at λex = 426 nm and λem = 539 nm. The quantification limit values were found to be 16.66, 66.66, and 33.33 µg/L for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Thus, we concluded that the Cur-MIP and high-performance liquid chromatographic-fluorescence method could be applied to selective extraction and could be used as a rapid tool for the determination of curcuminoids in medicinal herbal extracts.

6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-700354

RESUMEN

A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent, benzoyl peroxide as the initiator, and ethylene glycol dimethacrylate as the crosslinker. The effects of interaction on the adsorption capacity of the molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) were investigated. A comparison of the adsorption capacity for MIP and NIP indicated that the NIP had the lowest adsorption capacity. The curcuminoid-imprinted polymer (Cur-MIP) was syn-thesized from 0.0237 mmol of styrene, 47.0 g of acetonitrile, 1.0238 mmol of ethylene glycol dimetha-crylate, 0.0325 mmol of curcuminoids, and 0.2480 mmol of benzoyl peroxide. A high-performance liquid chromatography method with fluorescence detection was developed and validated for various chro-matographic conditions for the determination of the curcuminoids in turmeric samples. The sample solution was separated using the Cur-MIP via solid-phase extraction and analyzed on a Brownlee ana-lytical C18 column (150 mm × 6 mm, 5μm) using an isocratic elution consisting of acetonitrile and 0.1%trichloroacetic acid (40:60, v/v). The flow rate was maintained at 1.5 mL/min. The fluorescence detector was set to monitor atλex = 426 nm andλem = 539 nm. The quantification limit values were found to be 16.66, 66.66, and 33.33μg/L for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respec-tively. Thus, we concluded that the Cur-MIP and high-performance liquid chromatographic-fluorescence method could be applied to selective extraction and could be used as a rapid tool for the determination of curcuminoids in medicinal herbal extracts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA