Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1444: 97-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467975

RESUMEN

Nucleic acid (NA)-sensing Toll-like receptors (TLRs) reside in the endosomal compartment of innate immune cells, such as macrophages and dendritic cells. NAs transported to the endosomal compartment are degraded by DNases and RNases. Degradation products, including single-stranded DNA, oligoRNA, and nucleosides, are recognized by TLR7, TLR8, and TLR9 to drive the defense responses against pathogens. NA degradation influences endosomal TLR responses by generating and degrading TLR ligands. TLR ligand accumulation because of impaired NA degradation causes constitutive TLR activation, leading to autoinflammatory and autoimmune diseases. Furthermore, some genes associated with these diseases promote endosomal TLR responses. Therefore, endosomal TLRs are promising therapeutic targets for TLR-mediated inflammatory diseases, and novel drugs targeting TLRs are being developed.


Asunto(s)
Enfermedades Autoinmunes , Ácidos Nucleicos , Humanos , Receptores Toll-Like , Enfermedades Autoinmunes/tratamiento farmacológico , Ácidos Nucleicos/metabolismo , Macrófagos/metabolismo
2.
Int Immunol ; 36(4): 183-196, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147536

RESUMEN

In sarcoidosis, granulomas develop in multiple organs including the liver and lungs. Although mechanistic target of rapamycin complex 1 (mTORC1) activation in macrophages drives granuloma development in sarcoidosis by enhancing macrophage proliferation, little is known about the macrophage subsets that proliferate and mature into granuloma macrophages. Here, we show that aberrantly increased monocytopoiesis gives rise to granulomas in a sarcoidosis model, in which Tsc2, a negative regulator of mTORC1, is conditionally deleted in CSF1R-expressing macrophages (Tsc2csf1rΔ mice). In Tsc2csf1rΔ mice, common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), common monocyte progenitors / monocyte progenitors (cMoPs / MPs), inducible monocyte progenitors (iMoPs), and Ly6Cint CX3CR1low CD14- immature monocytes (iMOs), but not monocyte-dendritic cell progenitors (MDPs) and common dendritic cell progenitors (CDPs), accumulated and proliferated in the spleen. Consistent with this, monocytes, neutrophils, and neutrophil-like monocytes increased in the spleens of Tsc2csf1rΔ mice, whereas dendritic cells did not. The adoptive transfer of splenic iMOs into wild-type mice gave rise to granulomas in the liver and lungs. In these target organs, iMOs matured into Ly6Chi classical monocytes/macrophages (cMOs). Giant macrophages (gMAs) also accumulated in the liver and lungs, which were similar to granuloma macrophages in expression of cell surface markers such as MerTK and SLAMF7. Furthermore, the gMA-specific genes were expressed in human macrophages from sarcoidosis skin lesions. These results suggest that mTORC1 drives granuloma development by promoting the proliferation of monocyte/neutrophil progenitors and iMOs predominantly in the spleen, and that proliferating iMOs mature into cMOs and then gMAs to give rise to granuloma after migration into the liver and lungs in sarcoidosis.


Asunto(s)
Macrófagos , Sarcoidosis , Ratones , Humanos , Animales , Diferenciación Celular , Macrófagos/metabolismo , Monocitos/metabolismo , Granuloma/metabolismo , Granuloma/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
3.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963864

RESUMEN

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Triptasas/genética , Receptor Toll-Like 7/genética , Imiquimod , Pulmón , Enfisema Pulmonar/genética , Nicotiana , Ratones Endogámicos C57BL
4.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462944

RESUMEN

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Asunto(s)
Histiocitosis , Receptor Toll-Like 7 , Animales , Ratones , Citocinas/genética , Histiocitosis/genética , Mutación/genética , Nucleósidos , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/genética
5.
Nat Immunol ; 23(10): 1457-1469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36151396

RESUMEN

In lupus, Toll-like receptor 7 (TLR7) and TLR9 mediate loss of tolerance to RNA and DNA, respectively. Yet, TLR7 promotes disease, while TLR9 protects from disease, implying differences in signaling. To dissect this 'TLR paradox', we generated two TLR9 point mutants (lacking either ligand (TLR9K51E) or MyD88 (TLR9P915H) binding) in lupus-prone MRL/lpr mice. Ameliorated disease of Tlr9K51E mice compared to Tlr9-/- controls revealed a TLR9 'scaffold' protective function that is ligand and MyD88 independent. Unexpectedly, Tlr9P915H mice were more protected than both Tlr9K51E and Tlr9WT mice, suggesting that TLR9 also possesses ligand-dependent, but MyD88-independent, regulatory signaling and MyD88-mediated proinflammatory signaling. Triple-mixed bone marrow chimeras showed that TLR9-MyD88-independent regulatory roles were B cell intrinsic and restrained differentiation into pathogenic age-associated B cells and plasmablasts. These studies reveal MyD88-independent regulatory roles of TLR9, shedding light on the biology of endosomal TLRs.


Asunto(s)
Receptor Toll-Like 7 , Receptor Toll-Like 9 , Animales , ADN , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , ARN , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
6.
Front Immunol ; 13: 941931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812450

RESUMEN

Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and functional studies have shown that recognition of NAs by TLRs depends on NA processing by RNases and DNases. DNase II-dependent DNA degradation is required for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA degradation enables TLR7 and TLR8 to respond to nucleosides and oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the endosomal compartments affects the endosomal TLR responses. Dysregulation of NA metabolism in the endosomal compartment drives the TLR-dependent pathologies in human diseases.


Asunto(s)
Ácidos Nucleicos , Endosomas/metabolismo , Humanos , Ligandos , Ácidos Nucleicos/metabolismo , ARN Bicatenario/metabolismo , Receptor Toll-Like 3/metabolismo , Receptores Toll-Like/metabolismo
7.
Front Immunol ; 12: 777197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868046

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and multiple organ damage. Toll-like receptor 7 (TLR7), an innate immune RNA sensor expressed in monocytes/macrophages, dendritic cells (DCs), and B cells, promotes disease progression. However, little is known about the cellular mechanisms through which TLR7 drives lupus nephritis. Here, we show that the anti-mouse TLR7 mAb, but not anti-TLR9 mAb, protected lupus-prone NZBWF1 mice from nephritis. The anti-TLR7 mAb reduced IgG deposition in glomeruli by inhibiting the production of autoantibodies to the RNA-associated antigens. We found a disease-associated increase in Ly6Clow patrolling monocytes that expressed high levels of TLR7 and had upregulated expression of lupus-associated IL-10, CD115, CD31, and TNFSF15 in NZBWF1 mice. Anti-TLR7 mAb abolished this lupus-associated increase in patrolling monocytes in the circulation, spleen, and glomeruli. These results suggested that TLR7 drives autoantibody production and lupus-associated monocytosis in NZBWF1 mice and, that anti-TLR7 mAb is a promising therapeutic tool targeting B cells and monocytes/macrophages.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Nefritis Lúpica/etiología , Nefritis Lúpica/metabolismo , Monocitos/inmunología , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/inmunología , Animales , Autoantígenos/inmunología , Autoinmunidad , Linfocitos B/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Regulación de la Expresión Génica , Inmunoglobulina G/inmunología , Inmunohistoquímica , Inmunofenotipificación , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/patología , Ratones , Monocitos/metabolismo
8.
Nat Commun ; 12(1): 5874, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620855

RESUMEN

Phospholipase D3 (PLD3) and PLD4 polymorphisms have been associated with several important inflammatory diseases. Here, we show that PLD3 and PLD4 digest ssRNA in addition to ssDNA as reported previously. Moreover, Pld3-/-Pld4-/- mice accumulate small ssRNAs and develop spontaneous fatal hemophagocytic lymphohistiocytosis (HLH) characterized by inflammatory liver damage and overproduction of Interferon (IFN)-γ. Pathology is rescued in Unc93b13d/3dPld3-/-Pld4-/- mice, which lack all endosomal TLR signaling; genetic codeficiency or antibody blockade of TLR9 or TLR7 ameliorates disease less effectively, suggesting that both RNA and DNA sensing by TLRs contributes to inflammation. IFN-γ made a minor contribution to pathology. Elevated type I IFN and some other remaining perturbations in Unc93b13d/3dPld3-/-Pld4-/- mice requires STING (Tmem173). Our results show that PLD3 and PLD4 regulate both endosomal TLR and cytoplasmic/STING nucleic acid sensing pathways and have implications for the treatment of nucleic acid-driven inflammatory disease.


Asunto(s)
ADN/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Inflamación/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , ARN/metabolismo , Animales , Células Dendríticas , Endosomas/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Receptores Toll-Like , Transcriptoma
9.
Int Immunol ; 33(12): 835-840, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34223897

RESUMEN

Nucleic-acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)-gp96 complex. The TLR-Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of pro-inflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.


Asunto(s)
Endosomas/inmunología , Ácidos Nucleicos/inmunología , Receptores Toll-Like/inmunología , Animales , Humanos
10.
Int Immunol ; 33(9): 479-490, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34161582

RESUMEN

RNase T2, a ubiquitously expressed RNase, degrades RNAs in the endosomal compartments. RNA sensors, double-stranded RNA (dsRNA)-sensing Toll-like receptor 3 (TLR3) and single-stranded RNA (ssRNA)-sensing TLR7, are localized in the endosomal compartment in mouse macrophages. We here studied the role of RNase T2 in TLR3 and TLR7 responses in macrophages. Macrophages expressed RNase T2 and a member of the RNase A family RNase 4. RNase T2 was also expressed in plasmacytoid and conventional dendritic cells. Treatment with dsRNAs or type I interferon (IFN) up-regulated expression of RNase T2 but not RNase 4. RNase T2-deficiency in macrophages up-regulated TLR3 responses but impaired TLR7 responses. Mechanistically, RNase T2 degraded both dsRNAs and ssRNAs in vitro, and its mutants showed a positive correlation between RNA degradation and the rescue of altered TLR3 and TLR7 responses. H122A and C188R RNase T2 mutations, not H69A and E118V mutations, impaired both RNA degradation and the rescue of altered TLR3 and TLR7 responses. RNase T2 in bone marrow-derived macrophages was broadly distributed from early endosomes to lysosomes, and colocalized with the internalized TLR3 ligand poly(I:C). These results suggest that RNase T2-dependent RNA degradation in endosomes/lysosomes negatively and positively regulates TLR3 and TLR7 responses, respectively, in macrophages.


Asunto(s)
Endorribonucleasas/metabolismo , Endosomas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , ARN Bicatenario/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
Int Immunol ; 32(12): 785-798, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32840578

RESUMEN

Toll-like receptors (TLRs) impact myeloid cell responsiveness to environmental cues such as pathogen components and metabolites. Although TLR protein expression in monocytes and tissue macrophages is thought to be optimized for microenvironments in each tissue, a comprehensive study has not been reported. We here examined protein expression of endogenous TLRs in tissue-resident myeloid cells. Neutrophils in peripheral blood, spleen, liver and lung expressed TLR2, TLR4 and TLR5 in all tissues. Ly6C+ MHC II‒ classical monocytes mature into Ly6C‒ MHC II+ monocyte-derived dendritic cells (moDCs) or Ly6C‒ MHC II‒ patrolling monocytes. These subsets were found in all the tissues studied. TLR2 and TLR4 were displayed on all of these subsets, regardless of location. In contrast, expression of endosomal TLRs did vary with tissues and subsets. moDCs expressed TLR9, but much less TLR7. In contrast, TLR7, not TLR3 or TLR9, was highly expressed in classical and patrolling monocytes. Tissue macrophages such as red pulp macrophages in the spleen, Kupffer cells in the liver, microglia in the brain, alveolar macrophages in the lung and adipose tissue macrophages all expressed TLR2, TLR4 and TLR3. TLR7 was also expressed in these tissue macrophages except Kupffer cells in the liver. TLR9 expression in tissue macrophages was much lower or hard to detect. These results suggest that expression of endosomal TLRs in myeloid cells is influenced by their differentiation status and tissue-specific microenvironments.


Asunto(s)
Endosomas/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptores Toll-Like/inmunología , Animales , Células Cultivadas , Ratones , Receptores Toll-Like/genética
12.
J Leukoc Biol ; 106(4): 853-862, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219657

RESUMEN

TLRs respond to a variety of microbial products and initiate defense responses against bacteria and viruses. A variety of pathogens invade into and control the endosomal compartment to survive in host cells. On the other hand, host cells deploy cell surface and endosomal TLRs to pathogen-containing vesicles to mount defense responses. The endosomal compartment is a site for pathogen-sensing. As TLR-dependent defense responses are accompanied with a shift to the anabolic state, TLR responses need to be under metabolic control. Cellular metabolic state is monitored by sensing lysosomal metabolites by the mammalian target of rapamycin complex 1 (mTORC1). Type I IFN production induced by endosomal TLRs requires mTORC1. Recent studies have demonstrated that the interaction between TLRs and mTORC1 depends on their anterograde movement to the cell periphery. In a nutrient-sufficient state, a molecular complex called Ragulator recruits and activates mTORC1 in lysosomes. In parallel, Ragulator allows the small GTPase Arl8b to drive lysosomes to the cell periphery. Nutrient-activated mTORC1 in peripheral lysosomes is constitutively associated with type I IFN signaling molecules such as TRAF3 and IKKα. On the other hand, TLR7 and TLR3 are activated in the endosomal compartment and induce trafficking of TLR-containing vesicles to the cell periphery in a manner dependent on Arl8b or another GTPase Rab7a, respectively. Lysosomal trafficking helps TLR7 and TLR3 to interact with nutrient-activated mTORC1 and type I IFN signaling molecules. The endosomal compartments serve as platforms where metabolic sensing machinery licenses TLRs to initiate type I IFN responses.


Asunto(s)
Endosomas/metabolismo , Inmunidad Innata , Lisosomas/metabolismo , Animales , Adhesión Celular , Citocinas/biosíntesis , Humanos , Receptores Toll-Like/metabolismo
13.
Int Immunol ; 31(3): 167-173, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30535046

RESUMEN

Toll-like receptor 8 (TLR8), a sensor for pathogen-derived single-stranded RNA (ssRNA), binds to uridine (Uri) and ssRNA to induce defense responses. We here show that cytidine (Cyd) with ssRNA also activated TLR8 in peripheral blood leukocytes (PBLs) and a myeloid cell line U937, but not in an embryonic kidney cell line 293T. Cyd deaminase (CDA), an enzyme highly expressed in leukocytes, deaminates Cyd to Uri. CDA expression enabled TLR8 response to Cyd and ssRNA in 293T cells. CDA deficiency and a CDA inhibitor both reduced TLR8 responses to Cyd and ssRNA in U937. The CDA inhibitor also reduced PBL response to Cyd and ssRNA. A Cyd analogue, azacytidine, is used for the therapy of myelodysplastic syndrome and acute myeloid leukemia. Azacytidine with ssRNA induced tumor necrosis factor-α expression in U937 and PBLs in a manner dependent on CDA and TLR8. These results suggest that CDA enables TLR8 activation by Cyd or its analogues with ssRNA through deaminating activity. Nucleoside metabolism might impact TLR8 responses in a variety of situations such as the treatment with nucleoside analogues.


Asunto(s)
Citidina Desaminasa/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Receptor Toll-Like 8/metabolismo , Citidina/química , Humanos , Monocitos/metabolismo , Monocitos/patología , Células Mieloides/metabolismo , Células Mieloides/patología , Células Tumorales Cultivadas , Células U937
14.
Nat Immunol ; 19(10): 1071-1082, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201994

RESUMEN

TLR3 is a sensor of double-stranded RNA that is indispensable for defense against infection with herpes simplex virus type 1 (HSV-1) in the brain. We found here that TLR3 was required for innate immune responses to HSV-1 in neurons and astrocytes. During infection with HSV-1, TLR3 recruited the metabolic checkpoint kinase complex mTORC2, which led to the induction of chemokines and trafficking of TLR3 to the cell periphery. Such trafficking enabled the activation of molecules (including mTORC1) required for the induction of type I interferons. Intracranial infection of mice with HSV-1 was exacerbated by impairment of TLR3 responses with an inhibitor of mTOR and was significantly 'rescued' by potentiation of TLR3 responses with an agonistic antibody to TLR3. These results suggest that the TLR3-mTORC2 axis might be a therapeutic target through which to combat herpes simplex encephalitis.


Asunto(s)
Encefalitis por Herpes Simple/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Receptor Toll-Like 3/inmunología , Animales , Herpesvirus Humano 1 , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH
15.
Inflamm Regen ; 38: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988708

RESUMEN

Monoclonal antibody (mAb) is an essential tool for the analysis in various fields of biology. In the field of innate immunology, mAbs have been established and used for the study of Toll-like receptors (TLRs), a family of pathogen sensors that induces cytokine production and activate immune responses. TLRs play the role as a frontline of protection against pathogens, whereas excessive activation of TLRs has been implicated in a variety of infectious diseases and inflammatory diseases. For example, TLR7 and TLR9 sense not only pathogen-derived nucleic acids, but also self-derived nucleic acids in noninfectious inflammatory diseases such as systemic lupus erythematosus (SLE) or hepatitis. Consequently, it is important to clarify the molecular mechanisms of TLRs for therapeutic intervention in these diseases. For analysis of the molecular mechanisms of TLRs, mAbs to nucleic acid-sensing TLRs were developed recently. These mAbs revealed that TLR7 and TLR9 are localized also in the plasma membrane, while TLR7 and TLR9 were thought to be localized in endosomes and lysosomes. Among these mAbs, antagonistic mAbs to TLR7 or TLR9 are able to inhibit in vitro responses to synthetic ligands. Furthermore, antagonistic mAbs mitigate inflammatory disorders caused by TLR7 or TLR9 in mice. These results suggest that antagonistic mAbs to nucleic acid-sensing TLRs are a promising tool for therapeutic intervention in inflammatory disorders caused by excessive activation of nucleic acid-sensing TLRs. Here, we summarize the molecular mechanisms of TLRs and recent progresses in the trials targeting TLRs with mAbs to control inflammatory diseases.

16.
Front Immunol ; 9: 1491, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997629

RESUMEN

Mouse toll-like receptor 9 (TLR9) is an endosomal sensor for single-stranded DNA. TLR9 is transported from the endoplasmic reticulum to endolysosomes by a multiple transmembrane protein Unc93 homolog B1, and proteolytically cleaved at its ectodomain. The structure of TLR9 and its biochemical analyses have shown that the proteolytic cleavage of TLR9 ectodomain enables TLR9-dimerization and TLR9 activation. However, the requirement of TLR9 cleavage in vivo has not been studied. We here show that the 13 amino acids deletion at the cleavage site made TLR9 resistant to proteolytic cleavage. The deletion mutation in the Tlr9 gene impaired TLR9-dependent cytokine production in conventional dendritic cells from the mutant mice. Not only in vitro, in vivo production of inflammatory cytokines (TNF-α and IL-12p40), chemokine (CCR5/RANTES), and type I interferon (IFN-α) induced by administration of TLR9 ligand was also impaired. These results demonstrate that the TLR9 cleavage is required for TLR9 responses in vivo.

17.
Int Immunol ; 30(2): 43-51, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29452403

RESUMEN

Nucleic acid (NA)-sensing Toll-like receptors (TLRs) respond to DNA/RNA derived from pathogens and dead cells. Structural studies have revealed a variety of molecular mechanisms by which TLRs sense NAs. Double-stranded RNA and single-stranded DNA directly bind to TLR3 and TLR9, respectively, whereas TLR7 and TLR8 bind to nucleosides and oligoribonucleotides derived from RNAs. Activation of ligand-bound TLRs is influenced by the functional status of TLRs. Proteolytic cleavage of NA-sensing TLRs enables ligand-dependent TLR dimerization. Trafficking of ligand-activated TLRs in endosomal and lysosomal compartments is requisite for production of type I interferons. Activation of NA-sensing TLRs is required for the control of viruses such as herpes simplex virus and endogenous retroviruses. On the other hand, excessive activation of NA-sensing TLRs drives disease progression in a variety of inflammatory diseases including systemic lupus erythematosus, heart failure, arthritis and non-alcoholic steatohepatitis. NA-sensing TLRs are targets for therapeutic intervention in these diseases. We here focus on our recent progresses in our understanding of NA-sensing TLRs.


Asunto(s)
Inmunidad , Ácidos Nucleicos/inmunología , Ácidos Nucleicos/metabolismo , Receptores Toll-Like/metabolismo , Animales , ADN de Cadena Simple/inmunología , ADN de Cadena Simple/metabolismo , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Terapia Molecular Dirigida , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , Receptores Toll-Like/química
18.
Nat Commun ; 8(1): 1592, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150602

RESUMEN

Plasmacytoid dendritic cells (pDC) sense viral RNA through toll-like receptor 7 (TLR7), form self-adhesive pDC-pDC clusters, and produce type I interferons. This cell adhesion enhances type I interferon production, but little is known about the underlying mechanisms. Here we show that MyD88-dependent TLR7 signaling activates CD11a/CD18 integrin to induce microtubule elongation. TLR7+ lysosomes then become linked with these microtubules through the GTPase Arl8b and its effector SKIP/Plekhm2, resulting in perinuclear to peripheral relocalization of TLR7. The type I interferon signaling molecules TRAF3, IKKα, and mTORC1 are constitutively associated in pDCs. TLR7 localizes to mTORC1 and induces association of TRAF3 with the upstream molecule TRAF6. Finally, type I interferons are secreted in the vicinity of cell-cell contacts between clustered pDCs. These results suggest that TLR7 needs to move to the cell periphery to induce robust type I interferon responses in pDCs.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Glicoproteínas de Membrana/inmunología , ARN Viral/inmunología , Receptor Toll-Like 7/inmunología , Animales , Células Cultivadas , Células Dendríticas/metabolismo , Integrinas/inmunología , Integrinas/metabolismo , Interferón Tipo I/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/inmunología , Microtúbulos/metabolismo , Transducción de Señal/inmunología , Factor 3 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/inmunología , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
19.
J Biol Chem ; 292(37): 15378-15394, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28754693

RESUMEN

The Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) complex is essential for LPS recognition and induces innate immune responses against Gram-negative bacteria. As activation of TLR4/MD-2 is also critical for the induction of adaptive immune responses, TLR4/MD-2 agonists have been developed as vaccine adjuvants, but their efficacy has not yet been ascertained. Here, we demonstrate that a funiculosin (FNC) variant, FNC-RED, and FNC-RED and FNC derivatives are agonists for both murine and human TLR4/MD-2. FNC-RED induced nuclear factor-κB (NF-κB) activation via murine TLR4/MD-2, whereas FNC had no TLR4/MD-2 stimulatory activity. Biacore analysis revealed that FNC-RED binds to murine TLR4/MD-2 but not murine radioprotective 105 (RP105)/myeloid differentiation factor-1 (MD-1), another LPS sensor. FNC-RED induced CD14-independent expressions of pro-inflammatory cytokines and co-stimulatory molecules in murine macrophages and dendritic cells. In contrast, FNC-RED stimulation was reduced in CD14-dependent LPS responses, including dimerization and internalization of TLR4/MD-2 and IFN-ß expression. FNC-RED-induced IL-12p40 production from murine dendritic cells was dependent on NF-κB but not MAPK pathway. In addition, fetal bovine serum augmented lipid A-induced NF-κB activation but blocked FNC-RED-mediated responses. Two synthetic phosphate group-containing FNC-RED and FNC derivatives, FNC-RED-P01 and FNC-P01, respectively, activated human TLR4/MD-2, unlike FNC-RED. Finally, computational analysis revealed that this species-specific activation by FNC-RED and FNC-RED-P01 resulted from differences in electrostatic surface potentials between murine and human TLR4/MD-2. We conclude that FNC-RED and its synthetic derivative represent a novel category of murine and human TLR4/MD-2 agonist.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Antígeno 96 de los Linfocitos/agonistas , Macrófagos/efectos de los fármacos , Modelos Inmunológicos , Receptor Toll-Like 4/agonistas , Animales , Sitios de Unión , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Línea Celular , Células Cultivadas , Biología Computacional , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Diseño de Fármacos , Humanos , Ligandos , Antígeno 96 de los Linfocitos/química , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Fosforilación , Piridonas/química , Piridonas/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Organismos Libres de Patógenos Específicos , Relación Estructura-Actividad , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
20.
FEBS Lett ; 591(12): 1732-1741, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28542817

RESUMEN

Recently, we reported a novel function for C4b-binding protein (C4BP) in inhibiting the toll-like receptor (TLR)1/2 response by interacting with TLR2. TLRs share a common structure; hence, we examined the effect of C4BP on activation of other TLRs-TLR4 and TLR3. The results of immunoprecipitation assays suggest that C4BP interacts with TLR4/MD-2 but not TLR3. C4BP inhibits TLR4/MD-2-mediated, but not TLR3-mediated, proinflammatory cytokine production and nuclear factor (NF)-κB signaling. C4BP-deficient mice show increased interleukin (IL)-6 production in response to the TLR4/MD-2 ligand. A competition assay revealed that C4BP prevents an interaction between TLR4/MD-2 and its ligand. These findings indicate that C4BP binds to cell surface TLRs and inhibits the TLR-TLR ligand interaction, thereby inhibiting TLR activation.


Asunto(s)
Regulación hacia Abajo , Antígenos de Histocompatibilidad/metabolismo , Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Activación de Macrófagos , Macrófagos/metabolismo , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Citocinas/agonistas , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Células HEK293 , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/genética , Humanos , Ligandos , Lípido A/toxicidad , Lipopolisacáridos/toxicidad , Antígeno 96 de los Linfocitos/agonistas , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Noqueados , FN-kappa B/agonistas , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Células RAW 264.7 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 3/química , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...