Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Biol Chem ; 300(2): 105599, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159853

RESUMEN

It is known that the recommended dietary allowance of selenium (Se) is dangerously close to its tolerable upper intake level. Se is detoxified and excreted in urine as trimethylselenonium ion (TMSe) when the amount ingested exceeds the nutritional level. Recently, we demonstrated that the production of TMSe requires two methyltransferases: thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). In this study, we investigated the substrate recognition mechanisms of INMT and TPMT in the Se-methylation reaction. Examination of the Se-methyltransferase activities of two paralogs of INMT, namely, nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase, revealed that only INMT exhibited Se-methyltransferase activity. Consistently, molecular dynamics simulations demonstrated that dimethylselenide was preferentially associated with the active center of INMT. Using the fragment molecular orbital method, we identified hydrophobic residues involved in the binding of dimethylselenide to the active center of INMT. The INMT-L164R mutation resulted in a deficiency in Se- and N-methyltransferase activities. Similarly, TPMT-R152, which occupies the same position as INMT-L164, played a crucial role in the Se-methyltransferase activity of TPMT. Our findings suggest that TPMT recognizes negatively charged substrates, whereas INMT recognizes electrically neutral substrates in the hydrophobic active center embedded within the protein. These observations explain the sequential requirement of the two methyltransferases in producing TMSe.


Asunto(s)
Metiltransferasas , Selenio , Metiltransferasas/genética , Metiltransferasas/metabolismo , Selenio/metabolismo , Metilación , Activación Enzimática , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Humanos
2.
DNA Repair (Amst) ; 130: 103567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37713925

RESUMEN

The ATR pathway plays a crucial role in maintaining genome integrity as the major DNA damage checkpoint. It also attracts attention as a therapeutic target in cancer treatment. The Rad17-RFC2-5 complex loads the Rad9-Hus1-Rad1 (9-1-1) DNA clamp complex onto damaged chromatin to activate the ATR pathway. We previously reported that phosphorylation of a polyanionic C-terminal tail of human Rad17, iVERGE, is essential for the interaction between Rad17 and the 9-1-1 complex. However, the molecular mechanism has remained unclear. Here, we show that iVERGE directly interacts with the Hus1 subunit of the 9-1-1 complex through Rad17-S667 phosphorylation independently of the AAA+ ATPase domains. An exogenous iVERGE peptide interacted with the 9-1-1 complex in vivo. The binding conformation of the iVERGE peptide was analyzed by de novo modeling with docking simulation, simulated annealing-molecular dynamics simulation, and the fragment molecular orbital method. The in silico analyses predicted the association of the iVERGE peptide with the hydrophobic and basic patches on the Hus1 protein, and the corresponding Hus1 mutants were deficient in the interaction with the iVERGE peptide in vivo. The iVERGE peptide occupied the same position as the C-terminus of Saccharomyces cerevisiae RAD24 on MEC3. The interaction energy calculation suggested that the Rad17 KYxxL motif and the iVERGE peptide are the primary and secondary interaction surfaces between the Rad17-RFC2-5 and 9-1-1 complexes. Our data reveal a novel molecular interface, iVERGE, between the Rad17-RFC2-5 and 9-1-1 complexes in vertebrates and implicate that Rad17 utilizes two distinct molecular interfaces to regulate the 9-1-1 complex.


Asunto(s)
Adenosina Trifosfatasas , Cromatina , Humanos , Animales , Simulación de Dinámica Molecular , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Ciclo Celular
3.
Cell Signal ; 109: 110764, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315749

RESUMEN

c-Src tyrosine kinase plays roles in a wide range of signaling events and its increased activity is frequently observed in a variety of epithelial and non-epithelial cancers. v-Src, an oncogene first identified in the Rous sarcoma virus, is an oncogenic version of c-Src and has constitutively active tyrosine kinase activity. We previously showed that v-Src induces Aurora B delocalization, resulting in cytokinesis failure and binucleated cell formation. In the present study, we explored the mechanism underlying v-Src-induced Aurora B delocalization. Treatment with the Eg5 inhibitor (+)-S-trityl-L-cysteine (STLC) arrested cells in a prometaphase-like state with a monopolar spindle; upon further inhibition of cyclin-dependent kinase (CDK1) by RO-3306, cells underwent monopolar cytokinesis with bleb-like protrusions. Aurora B was localized to the protruding furrow region or the polarized plasma membrane 30 min after RO-3306 addition, whereas inducible v-Src expression caused Aurora B delocalization in cells undergoing monopolar cytokinesis. Delocalization was similarly observed in monopolar cytokinesis induced by inhibiting Mps1, instead of CDK1, in the STLC-arrested mitotic cells. Importantly, western blotting analysis and in vitro kinase assay revealed that v-Src decreased the levels of Aurora B autophosphorylation and its kinase activity. Furthermore, like v-Src, treatment with the Aurora B inhibitor ZM447439 also caused Aurora B delocalization at concentrations that partially inhibited Aurora B autophosphorylation. Given that phosphorylation of Aurora B by v-Src was not observed, these results suggest that v-Src causes Aurora B delocalization by indirectly suppressing Aurora B kinase activity.


Asunto(s)
Citocinesis , Quinolinas , Humanos , Aurora Quinasa B/metabolismo , Fosforilación , Oncogenes , Mitosis , Células HeLa
4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293155

RESUMEN

The nucleolus is a non-membranous structure in the nucleus and forms around ribosomal DNA repeats. It plays a major role in ribosomal biogenesis through the transcription of ribosomal DNA and regulates mRNA translation in response to cellular stress including DNA damage. Rad17 is one of the proteins that initiate and maintain the activation of the ATR pathway, one of the major DNA damage checkpoints. We have recently reported that the central basic domain of Rad17 contains a nuclear localization signal and that the nuclear translocation of Rad17 promotes its proteasomal degradation. Here, we show that the central basic domain contains the nucleolar localization signal as well as the nuclear localization signal. The nucleolar localization signal overlaps with the nuclear localization signal and is capable of transporting an exogenous protein into the nucleolus. Phosphomimetic mutations of the central basic domain inhibit nucleolar accumulation, suggesting that the post-translational modification sites regulate the nucleolar localization. Nucleolar accumulation of Rad17 is promoted by proteasome inhibition and UV irradiation. Our data show the nucleolar localization of Rad17 and suggest a possible role of Rad17 in the nucleolus upon UV irradiation.


Asunto(s)
Señales de Localización Nuclear , Complejo de la Endopetidasa Proteasomal , Señales de Localización Nuclear/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo
5.
Anal Chem ; 94(22): 7952-7959, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617709

RESUMEN

We have developed a rapid and precise quantification method for a histidine (His)-tagged recombinant protein produced in Escherichia coli (E. coli) by single-cell inductively coupled plasma-mass spectrometry (SC-ICP-MS). Plasmid vector containing enhanced green fluorescent protein (EGFP) or red fluorescent protein (mCherry) gene fused with His-tag was transformed into E. coli. The transformed E. coli was exposed to nickel (Ni) chloride or cobalt (Co) chloride for labeling His-tag with the Ni or Co ion. Then, E. coli was analyzed by SC-ICP-MS to determine the amount of EGFP or mCherry protein on the basis of the signal of Ni or Co bound to His-tag. By comparing Ni and Co contents in E. coli expressing His-tagged mCherry with those in nontagged mCherry, the specific binding of Co to His-tag was more clearly detected than that of Ni. The Co contents were increased until 6 h after the protein induction, and this observation was coincident with the increases in fluorescence intensity of EGFP or mCherry measured by a flow cytometer. However, the Co contents were decreased for EGFP and kept at a constant level for mCherry from 6 to 24 h despite the continuous increase in the fluorescence intensity through incubation. The fluorescent proteins were mainly recovered in the insoluble fraction 24 h after the induction. This can be explained by the fact that the overexpressed fluorescent proteins with His-tag are transferred into inclusion bodies, which hampers the binding of the fluorescent proteins to the Co ion. SC-ICP-MS can be a useful technique to precisely quantify soluble recombinant proteins in E. coli without the extraction and purification process.


Asunto(s)
Escherichia coli , Histidina , Cloruros , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/química , Indicadores y Reactivos , Espectrometría de Masas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes/química
6.
Biochem Biophys Rep ; 29: 101223, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35146136

RESUMEN

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.

7.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34841876

RESUMEN

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Asunto(s)
Mercurio/efectos adversos , Nanopartículas/efectos adversos , Selenio/efectos adversos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Mercurio/metabolismo , Nanopartículas/metabolismo , Selenio/metabolismo , Células Tumorales Cultivadas
8.
J Biol Chem ; 297(2): 100831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174284

RESUMEN

The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230-270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Daño del ADN , Señales de Localización Nuclear/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Puntos de Control del Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Señales de Localización Nuclear/química , Fosforilación , Proteolisis
9.
J Cell Mol Med ; 25(3): 1677-1687, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33465289

RESUMEN

v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.


Asunto(s)
Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína Oncogénica pp60(v-src)/metabolismo , Biomarcadores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunofenotipificación , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Moduladores de Tubulina/farmacología , Quinasa Tipo Polo 1
10.
Chem Res Toxicol ; 33(9): 2467-2474, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786394

RESUMEN

Selenium (Se) is an essential trace element in animals; however, the element can become highly toxic in excess amounts beyond the nutritional level. Although Se is mainly excreted into urine as a selenosugar within the nutritional level, excess amounts of Se are transformed as an alternative urinary metabolite, trimethylselenonium ion (TMSe). Se methylation appears to be an important metabolic process for the detoxification of excess Se; however, the biochemical mechanisms underlying the Se methylation have not been elucidated. In this study, we evaluated biochemical characteristics of two human methyltransferases for Se methylation, thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). The first methylation of Se, i.e., a nonmethylated to a monomethylated form, was specifically driven by TPMT, and INMT specifically mediated the third methylation, i.e., dimethylated to trimethylated form. The second methylation, i.e., a monomethylated to dimethylated form, was driven by either TPMT or INMT. Exogenous expression of TPMT, but not INMT, ameliorated the cytotoxicity of inorganic nonmethylated selenium salt, suggesting that only TPMT gave the cellular resistance against selenite exposure. TPMT was ubiquitously expressed in most mouse tissues and preferably expressed in the liver and kidneys, while INMT was specifically expressed in the lung and supplementally expressed in the liver and kidneys. Our results revealed that both TPMT and INMT cooperatively contributed to the TMSe production, enabling urinary excretion of Se and maintenance of homeostasis of this essential yet highly toxic trace element. Thus, TPMT and INMT can be recognized as selenium methyltransferases as a synonym.


Asunto(s)
Metiltransferasas/metabolismo , Compuestos de Selenio/metabolismo , Células Cultivadas , Cromatografía Liquida , Células HEK293 , Humanos , Compuestos de Selenio/química , Compuestos de Selenio/orina , Espectrometría de Masa por Ionización de Electrospray
11.
Biochem Biophys Res Commun ; 517(2): 310-316, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31353086

RESUMEN

The ATR-dependent DNA damage checkpoint is one of the major checkpoint pathways. The interaction between the Rad17-RFC2-5 and 9-1-1 complexes is central to the ATR-Chk1 pathway. However, little is known about the regulation of the interaction. We recently showed that vertebrate Rad17 proteins share a conserved C-terminal tail and that the C-terminal tails have a conserved amino acid motif named iVERGE that must be intact for the interaction between Rad17 and the 9‒1‒1 complex. In human Rad17, the Y665 and S667 residues are conserved in iVERGE. The Rad17-S667 residue is phosphorylated by CK2, and the phosphorylation is important for the interaction with the 9‒1‒1 complex. Here, we show that a C-terminal threonine residue of Rad17, T670 in human Rad17, is constitutively phosphorylated in vivo. The T670 phosphorylation is important for the S667 phosphorylation, and vice versa. Phosphomimetic mutations in the T670 residue promote the interaction with the 9-1-1 complex. The T670 and Y665 residues show functional redundancy, and their roles are dependent on the S667 phosphorylation. Rad17-T670 is phosphorylated by casein kinase 1δ/ε. Our data suggest that iVERGE integrates multiple signaling pathways to regulate the ATR-Chk1 pathway.


Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Quinasa de la Caseína II/metabolismo , Quinasa Idelta de la Caseína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mapas de Interacción de Proteínas , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células COS , Proteínas de Ciclo Celular/química , Chlorocebus aethiops , Daño del ADN , Humanos , Fosforilación , Transducción de Señal
12.
Biochem Biophys Res Commun ; 504(2): 380-386, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-29902452

RESUMEN

An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Exonucleasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Daño del ADN , Replicación del ADN , Proteínas Fluorescentes Verdes/química , Humanos , Naftiridinas/química , Fenazinas , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios Proteicos , Serina/química , Transducción de Señal
13.
Biochem Biophys Res Commun ; 490(4): 1147-1153, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28666868

RESUMEN

In the activation and maintenance of ATR-dependent DNA damage checkpoint, the interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential, however, the regulatory mechanism of the interaction is not known. Here we show that vertebrate Rad17 proteins contain a polyanionic 12-amino acid sequence in the C-terminal ends that is important for the 9-1-1 interaction. We demonstrate that the C-terminal tail contains a conserved sequence designated iVERGE that must be intact for the 9-1-1 interaction and contains potential posttranslational modification sites. Our data raise a possibility that the Rad17 C-terminal tail is a molecular switch that regulates the 9-1-1 interaction and the ATR pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Complejos Multiproteicos/metabolismo , Polímeros/metabolismo , Proteínas de Ciclo Celular/química , Células Cultivadas , Exonucleasas/metabolismo , Humanos , Complejos Multiproteicos/química , Polielectrolitos
15.
In Vitro Cell Dev Biol Anim ; 53(3): 191-198, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27924445

RESUMEN

The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27Kip1 expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Músculo Liso Vascular/citología , Polisacáridos Bacterianos/farmacología , Animales , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Polisacáridos Bacterianos/química , Conejos , Proteína de Retinoblastoma/biosíntesis , Proteína de Retinoblastoma/genética , Suspensiones/química , Suspensiones/farmacología
16.
Biochem Biophys Res Commun ; 477(4): 982-987, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387238

RESUMEN

ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17-RFC and Rad9-Rad1-Hus1 (9-1-1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9-1-1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9-1-1 complex is not required for Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9-1-1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/ultraestructura , ADN/ultraestructura , Unión Proteica , Subunidades de Proteína , Relación Estructura-Actividad
17.
Int J Mol Sci ; 17(6)2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27271602

RESUMEN

An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells.


Asunto(s)
Cafeína/farmacología , Cromosomas/genética , Cromosomas/metabolismo , Daño del ADN/efectos de los fármacos , Proteína Oncogénica pp60(v-src)/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Fosforilación
18.
Cell Biol Int ; 40(1): 16-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26194897

RESUMEN

Progression of DNA replication is tightly controlled by replication checkpoints to ensure the accurate and rapid duplication of genetic information. Upon replication stress, the replication checkpoint slows global DNA replication by inhibiting the late-firing origins and by slowing replication fork progression. Activation of the replication checkpoint has been studied in depth; however, little is known about the termination of the replication checkpoint. Here, we show that Src family kinases promote the recovery from replication checkpoints. shRNA knockdown of a Src family kinase, Lyn, and acute chemical inhibition of Src kinases prevented inactivation of Chk1 after removal of replication stress. Consistently, Src inhibition slowed resumption of DNA replication, after the removal of replication blocks. The effect of Src inhibition was not observed in the presence of an ATM/ATR inhibitor caffeine. These data indicate that Src kinases promote the resumption of DNA replication by suppressing ATR-dependent replication checkpoints. Surprisingly, the resumption of replication was delayed by caffeine. In addition, Src inhibition delayed recovery from replication fork collapse. We propose that Src kinases maintain the balance between replication stress and the activity of the replication checkpoint.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Replicación del ADN/fisiología , Familia-src Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Cafeína/farmacología , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Transducción de Señal , Familia-src Quinasas/antagonistas & inhibidores
19.
Cell Biol Int ; 39(8): 923-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25790472

RESUMEN

The DNA damage checkpoint arrests cell cycle progression to allow time for DNA repair. After completion of DNA repair, checkpoint activation is terminated, and cell cycle progression is resumed in a process called checkpoint recovery. The activation of the checkpoint has been studied in depth, but little is known about recovery from the DNA damage checkpoint. Recently we showed that Src family kinases promote recovery from the G2 DNA damage checkpoint. Here we show that imatinib inhibits inactivation of ATM/ATR signaling pathway to suppress recovery from Adriamycin/doxorubicin-induced DNA damage checkpoint arrest. Imatinib and pazopanib, two distinct inhibitors of PDGFR/c-Kit family kinases, delayed recovery from checkpoint arrest and inhibited the subsequent S-G2-M transition after Adriamycin exposure. By contrast, imatinib and pazopanib did not delay the recovery from checkpoint arrest in the presence of an ATM/ATR inhibitor caffeine. Consistently, imatinib induced a persistent activation of ATR-Chk1 signaling. By the way, the maintenance of G2 checkpoint arrest is largely dependent on ATR-Chk1 signaling. However, unlike Src inhibition, imatinib did not delay the recovery from checkpoint arrest in the presence of an ATM inhibitor KU-55933. Furthermore, imatinib induced a persistent activation of ATM-KAP1 signaling, and a possible involvement of imatinib in an ATM-dependent DNA damage response is suggested. These results reveal that imatinib inhibits recovery from Adriamycin-induced DNA damage checkpoint arrest in an ATM/ATR-dependent manner and raise the possibility that imatinib may inhibit resumption of tumor proliferation after chemo- and radiotherapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Doxorrubicina/farmacología , Mesilato de Imatinib/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Indazoles , Proteínas Quinasas/metabolismo , Pirimidinas/farmacología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Proteína 28 que Contiene Motivos Tripartito
20.
Biochem Biophys Res Commun ; 452(3): 542-7, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25173936

RESUMEN

DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control del Ciclo Celular/genética , Transducción de Señal/genética , Familia-src Quinasas/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Doxorrubicina/farmacología , Regulación de la Expresión Génica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa II/farmacología , Proteína 28 que Contiene Motivos Tripartito , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...