Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Radiol Phys Technol ; 17(3): 581-595, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39028438

RESUMEN

In this study, we aimed to conduct a survey on the current clinical practice of, staffing for, commissioning of, and staff training for online adaptive radiotherapy (oART) in the institutions that installed commercial oART systems in Japan, and to share the information with institutions that will implement oART systems in future. A web-based questionnaire, containing 107 questions, was distributed to nine institutions in Japan. Data were collected from November to December 2023. Three institutions each with the MRIdian (ViewRay, Oakwood Village, OH, USA), Unity (Elekta AB, Stockholm, Sweden), and Ethos (Varian Medical Systems, Palo Alto, CA, USA) systems completed the questionnaire. One institution (MRIdian) had not performed oART by the response deadline. Each institution had installed only one oART system. Hypofractionation, and moderate hypofractionation or conventional fractionation were employed in the MRIdian/Unity and Ethos systems, respectively. The elapsed time for the oART process was faster with the Ethos than with the other systems. All institutions added additional staff for oART. Commissioning periods differed among the oART systems owing to provision of beam data from the vendors. Chambers used during commissioning measurements differed among the institutions. Institutional training was provided by all nine institutions. To the best of our knowledge, this was the first survey about oART performed using commercial systems in Japan. We believe that this study will provide useful information to institutions that installed, are installing, or are planning to install oART systems.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Japón , Encuestas y Cuestionarios , Humanos , Radioterapia Asistida por Computador , Radioterapia/instrumentación
2.
J Radiat Res ; 65(4): 507-511, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38934659

RESUMEN

The aim of this study was to investigate planning target volume (PTV) margin in online adaptive radiation therapy (oART) for gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Four consecutive patients with gastric MALT lymphoma who received oART (30 Gy in 15 fractions) on the oART system were included in this study. One hundred and twenty cone-beam computed tomography (CBCT) scans acquired pre- and post-treatment of 60 fractions for all patients were used to evaluate intra- and interfractional motions. Patients were instructed on breath-holding at exhalation during image acquisition. To assess the intrafraction gastric motion, different PTVs were created by isotropically extending the CTV contoured on a pre-CBCT image (CTVpre) at1 mm intervals. Intrafraction motion was defined as the amount of expansion covering the contoured CTV on post-CBCT images (CTVpost). Interfractional motion was defined as the amount of reference CTV expansion that could cover each CTVpre, as well as the evaluation of the intrafractional motion. PTV margins were estimated from the cumulative proportion of fraction covering the intra- and interfractional motions. The extent of expansion covering the CTVs in 90% of fractions was adopted as the PTV margin. The PTV margin for intrafractional gastric motion using the oART system with breath-holding was 14 mm. In contrast, the PTV margin for interfractional gastric organ motion without the oART system was 25 mm. These results indicated that the oART system can reduce the PTV margin by >10 mm. Our results could be valuable data for oART cases.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Linfoma de Células B de la Zona Marginal , Planificación de la Radioterapia Asistida por Computador , Neoplasias Gástricas , Humanos , Linfoma de Células B de la Zona Marginal/radioterapia , Linfoma de Células B de la Zona Marginal/diagnóstico por imagen , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Radioterapia Guiada por Imagen/métodos , Sistemas en Línea
3.
J Med Phys ; 49(1): 33-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828071

RESUMEN

Purpose: This study aimed to develop a deep learning model for the prediction of V20 (the volume of the lung parenchyma that received ≥20 Gy) during intensity-modulated radiation therapy using chest X-ray images. Methods: The study utilized 91 chest X-ray images of patients with lung cancer acquired routinely during the admission workup. The prescription dose for the planning target volume was 60 Gy in 30 fractions. A convolutional neural network-based regression model was developed to predict V20. To evaluate model performance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were calculated with conducting a four-fold cross-validation method. The patient characteristics of the eligible data were treatment period (2018-2022) and V20 (19.3%; 4.9%-30.7%). Results: The predictive results of the developed model for V20 were 0.16, 5.4%, and 4.5% for the R2, RMSE, and MAE, respectively. The median error was -1.8% (range, -13.0% to 9.2%). The Pearson correlation coefficient between the calculated and predicted V20 values was 0.40. As a binary classifier with V20 <20%, the model showed a sensitivity of 75.0%, specificity of 82.6%, diagnostic accuracy of 80.6%, and area under the receiver operator characteristic curve of 0.79. Conclusions: The proposed deep learning chest X-ray model can predict V20 and play an important role in the early determination of patient treatment strategies.

4.
J Cancer Res Ther ; 19(5): 1261-1266, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37787293

RESUMEN

Objectives: The objective of the study is to analyze the difference in target dose distributions between Acuros XB (AXB) and collapsed cone convolution (CCC)/superposition and the impact of the tumor locations in clinical cases of stereotactic ablative body radiotherapy (SABR) for lung cancer. Materials and Methods: Ninety-six patients underwent SABR for lung cancers Kyushu University Hospital from 2014 to 2017. We recalculated clinical plans originally calculated by AXB using CCC with the identical monitor units (MUs) and beam arrangements. We calculated the following dosimetric parameters: maximum dose (Dmax), minimum dose (Dmin), homogeneity index (HI), conformity index (CI), and D95 of the planning target volume (PTV). We investigated the difference between the results of two calculations and examined the impact of tumor location. Moreover, we determined the target central dose using a thorax phantom and assessed the calculation accuracy of the two algorithms for each fraction. Results: CCC significantly overestimated the dose to PTV, compared to AXB (P < 0.05). The mean differences of Dmax, Dmin, and D95 were 1.17, 1.95, and 1.85 Gy, respectively. The mean differences of HI and CI were 0.02 and - 0.06. Dmin, HI, and D95 had significant correlations with the tumor location, and the difference was greater when the PTV was included the chest wall (P < 0.05). The discrepancy between the calculated and irradiated dose was 2.48% for CCC, whereas it was 0.14% for AXB. Conclusions: We demonstrated that CCC significantly overestimated the dose to PTV relative to AXB in clinical cases of lung SABR.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/patología , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radiometría , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos
5.
Radiol Phys Technol ; 16(4): 497-505, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713060

RESUMEN

This study evaluated the validity of internal target volumes (ITVs) defined by three- (3DCT) and four-dimensional computed tomography (4DCT), and subsequently compared them with actual movements during treatment. Five patients with upper lobe lung tumors were treated with stereotactic body radiotherapy (SBRT) at 48 Gy in four fractions. Planning 3DCT images were acquired with peak-exhale and peak-inhale breath-holds, and 4DCT images were acquired in the cine mode under free breathing. Cine images were acquired using an electronic portal imaging device during irradiation. Tumor coverage was evaluated based on the manner in which the peak-to-peak breathing amplitude on the planning CT covered the range of tumor motion (± 3 SD) during irradiation in the left-right, anteroposterior, and cranio-caudal (CC) directions. The mean tumor coverage of the 4DCT-based ITV was better than that of the 3DCT-based ITV in the CC direction. The internal margin should be considered when setting the irradiation field for 4DCT. The proposed 4DCT-based ITV can be used as an efficient approach in free-breathing SBRT for upper-lobe tumors of the lung because its coverage is superior to that of 3DCT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Radiocirugia/métodos , Incertidumbre , Pulmón/diagnóstico por imagen , Pulmón/efectos de la radiación , Carcinoma de Pulmón de Células no Pequeñas/patología , Tomografía Computarizada Cuatridimensional/métodos , Respiración , Planificación de la Radioterapia Asistida por Computador/métodos
6.
Phys Eng Sci Med ; 46(3): 1091-1100, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247102

RESUMEN

PURPOSE: To evaluate whether knowledge-based volumetric modulated arc therapy plans for prostate cancer with a multi-institution model (broad model) are clinically useful and effective as a standardization method. METHODS: A knowledge-based planning (KBP) model was trained with 561 prostate VMAT plans from five institutions with different contouring and planning policies. Five clinical plans at each institution were reoptimized with the broad and single institution model, and the dosimetric parameters and relationship between Dmean and the overlapping volume (rectum or bladder and target) were compared. RESULTS: The differences between the broad and single institution models in the dosimetric parameters for V50, V80, V90, and Dmean were: rectum; 9.5% ± 10.3%, 3.3% ± 1.5%, 1.7% ± 1.6%, and 3.6% ± 3.6%, (p < 0.001), bladder; 8.7% ± 12.8%, 1.5% ± 2.6%, 0.7% ± 2.4%, and 2.7% ± 4.6% (p < 0.02), respectively. The differences between the broad model and clinical plans were: rectum; 2.4% ± 4.6%, 1.7% ± 1.7%, 0.7% ± 2.4%, and 1.5% ± 2.0%, (p = 0.004, 0.015, 0.112, and 0.009) bladder; 2.9% ± 5.8%, 1.6% ± 1.9%, 0.9% ± 1.7%, and 1.1% ± 4.8%, (p < 0.018), respectively. Positive values indicate that the broad model has a lower value. Strong correlations were observed (p < 0.001) in the relationship between Dmean and the rectal and bladder volume overlapping with the target in the broad model (R = 0.815 and 0.891, respectively). The broad model had the smallest R2 of the three plans. CONCLUSIONS: KBP with the broad model is clinically effective and applicable as a standardization method at multiple institutions.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Próstata , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Estándares de Referencia
7.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 79(5): 453-461, 2023 May 20.
Artículo en Japonés | MEDLINE | ID: mdl-36927669

RESUMEN

PURPOSE: To investigate fundamental dosimetric properties of surface dose, exit dose, and beam profile of the brass mesh bolus for 4, 6, and 10 MV high-energy photon beams in radiation therapy. METHODS: Surface dose and exit dose in the water-equivalent phantom were measured, and percent depth doses (PDDs) were calculated with no bolus, one layer of brass mesh, two layers of brass mesh bolus, three layers of brass mesh bolus, and 0.5 cm tissue-equivalent (TE) bolus. Exit dose was measured at a phantom thickness of 10 cm. Beam profiles were measured at phantom depths of 0 cm and 10 cm. All dosimetry was performed for 4, 6, and 10 MV photon beams using a linear accelerator. RESULTS: The surface dose at a phantom depth of 0 cm increased to 37.3%, 36.3%, and 31.0% for 4, 6, and 10 MV, respectively, with the brass mesh bolus compared to the case of no bolus. The surface dose decreased with one layer of brass mesh bolus compared to that with the 0.5 cm TE bolus. On the other hand, the exit dose increased to 22.0%, 23.1%, and 22.8% for 4, 6, and 10 MV, respectively, with the brass mesh bolus compared to the case of no bolus. The beam profile at the depth of 0 cm showed oscillations, and the difference between the maximum and minimum doses was up to 13.1% with one layer of brass mesh bolus. CONCLUSION: It was suggested that the brass mesh bolus not only increases the surface dose but also has different properties from the conventional TE bolus.


Asunto(s)
Radiometría , Mallas Quirúrgicas , Cobre , Zinc , Dosificación Radioterapéutica
8.
Anticancer Res ; 42(11): 5305-5314, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36288870

RESUMEN

BACKGROUND/AIM: This study evaluated the impact of knowledge-based plan (KBP) model improvement on plan complexity and delivery accuracy in volumetric modulated arc therapy (VMAT) for prostate cancer at multiple institutions. MATERIALS AND METHODS: Five institutions created the first KBP model before April 2017 and subsequently devised a new model (second model) based on feedback from the first KBP and the efforts of planners after April 2019. The dose-volume histogram (DVH) parameters were validated for two prostate cancer cases between the first and second KBPs. Plan complexity metrics, of the modulation complexity score for VMAT (MCSv), closed leaf score (CLS), small aperture score (SAS), and leaf travel (LT), were compared. The delivery accuracy metrics of γ pass rate and point dose discrepancy (plan vs. measurement) at isocenter were also compared. RESULTS: There were no significant differences in DVH parameters between the KBPs. Conversely, V50% of the rectum and bladder was reduced in 6/10 and 8/10 patients, respectively, and these variations were also converged from the first KBP to the second KBP. The mean±1SDs of MCSv, CLS, SAS20mm, and LT (first KBP vs. second KBP) were 0.27±0.033 vs. 0.26±0.044, 0.062±0.032 vs. 0.14±0.091, 0.59±0.048 vs. 0.70±0.14, and 411.91±32.08 mm vs. 548.33±127.50 mm, respectively. The delivery accuracy did not differ, whereas MCSv was moderately correlated with the point dose discrepancy. CONCLUSION: Multi-leaf collimator motion could be more complex with KBP model improvement, which had the potential to deteriorate the delivery accuracy.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Neoplasias de la Próstata/radioterapia , Rayos gamma
9.
Sci Rep ; 12(1): 15282, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088382

RESUMEN

We established a multi-institution model (big model) of knowledge-based treatment planning with over 500 treatment plans from five institutions in volumetric modulated arc therapy (VMAT) for prostate cancer. This study aimed to clarify the efficacy of using a large number of registered treatment plans for sharing the big model. The big model was created with 561 clinically approved VMAT plans for prostate cancer from five institutions (A: 150, B: 153, C: 49, D: 60, and E: 149) with different planning strategies. The dosimetric parameters of planning target volume (PTV), rectum, and bladder for two validation VMAT plans generated with the big model were compared with those from each institutional model (single-institution model). The goodness-of-fit of regression lines (R2 and χ2 values) and ratios of the outliers of Cook's distance (CD) > 4.0, modified Z-score (mZ) > 3.5, studentized residual (SR) > 3.0, and areal difference of estimate (dA) > 3.0 for regression scatter plots in the big model and single-institution model were also evaluated. The mean ± standard deviation (SD) of dosimetric parameters were as follows (big model vs. single-institution model): 79.0 ± 1.6 vs. 78.7 ± 0.5 (D50) and 0.13 ± 0.06 vs. 0.13 ± 0.07 (Homogeneity Index) for the PTV; 6.6 ± 4.0 vs. 8.4 ± 3.6 (V90) and 32.4 ± 3.8 vs. 46.6 ± 15.4 (V50) for the rectum; and 13.8 ± 1.8 vs. 13.3 ± 4.3 (V90) and 39.9 ± 2.0 vs. 38.4 ± 5.2 (V50) for the bladder. The R2 values in the big model were 0.251 and 0.755 for rectum and bladder, respectively, which were comparable to those from each institution model. The respective χ2 values in the big model were 1.009 and 1.002, which were closer to 1.0 than those from each institution model. The ratios of the outliers in the big model were also comparable to those from each institution model. The big model could generate a comparable VMAT plan quality compared with each single-institution model and therefore could possibly be shared with other institutions.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
10.
In Vivo ; 36(2): 687-693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35241523

RESUMEN

BACKGROUND/AIM: The aim of this study was to evaluate the mechanical performance and the effect on dose distribution and deliverability of volumetric modulated arc therapy (VMAT) plans for prostate cancer created with the commercial knowledge-based planning (KBP) system (RapidPlan™). MATERIALS AND METHODS: Three institutions, A, B, and C were enrolled in this study. Each institution established and trained a KBP model with their own cases. CT data and structures for 45 patients at institution B were utilized to validate the dose-volume parameters (D2(%), D95(%), and D98(%) for target, and V50(%), V75(%), and V90(%) for rectum and bladder), and the following mechanical performance parameters and gamma passing rates of each KBP model: leaf sequence variability (LSV), aperture area variability (AAV), total monitor unit (MU), modulation complexity score for VMAT (MCSv), MU/control point (CP), aperture area (AA)/CP, and MU×AA/CP. RESULTS: Significant differences (p<0.01) in dosimetric parameters such as D2 and D98 for target and V50, V75, and V90 for bladder were observed among the three institutions. The means and standard deviations of MCSv were 0.31±0.03, 0.29±0.02, and 0.32±0.03, and the angles of maximum and minimum MU×AA/CP were 269° and 13°, 269° and 13°, and 273° and 153° at institutions A, B, and C, respectively. The mean gamma passing rate (1%/1 mm.) was >95% for all cases in each institution. Dose distribution and mechanical performance significantly differed between the three models. CONCLUSION: Each KBP model had different dose distributions and mechanical performance but could create an acceptable plan for deliverability regardless of mechanical performance.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
11.
Rep Pract Oncol Radiother ; 26(6): 849-860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992856

RESUMEN

BACKGROUND: The aim of this study was to investigate the performance of the RapidPlan (RP ) using models registered pseudostructures, and to determine how many structures are required for automatic optimization of volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer. MATERIALS AND METHODS: Pseudo-structures around the PTV were retrospectively contoured for patients who had completed treatment at five institutions. For 22 common patients, plans were generated with a single optimization for models with two (RP_2), four (RP_4), and five (RP_5) registered structures, and the dosimetric parameters of these models were compared with a clinical plan with several optimizations. RESULTS: Most dosimetric parameters showed no major differences between each RP model. In particular, the rectum Dmax, V50Gy, and V40Gy with RP_2, RP_4, and RP_5 were not significantly different, and were lower than those of the clinical plan. The average proportions of plans achieving acceptable criteria for dosimetric parameters were close to 100% for all models. Using RP_2, the average time for the VMAT planning was reduced by 88 minutes compared with the clinical plan. CONCLUSION: The RapidPlan model with two registered pseudo-structures could generate clinically acceptable plans while saving time.

12.
Sci Rep ; 10(1): 20424, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235324

RESUMEN

This study developed a radiomics-based predictive model for radiation-induced pneumonitis (RP) after lung cancer stereotactic body radiation therapy (SBRT) on pretreatment planning computed tomography (CT) images. For the RP prediction models, 275 non-small-cell lung cancer patients consisted of 245 training (22 with grade ≥ 2 RP) and 30 test cases (8 with grade ≥ 2 RP) were selected. A total of 486 radiomic features were calculated to quantify the RP texture patterns reflecting radiation-induced tissue reaction within lung volumes irradiated with more than x Gy, which were defined as LVx. Ten subsets consisting of all 22 RP cases and 22 or 23 randomly selected non-RP cases were created from the imbalanced dataset of 245 training patients. For each subset, signatures were constructed, and predictive models were built using the least absolute shrinkage and selection operator logistic regression. An ensemble averaging model was built by averaging the RP probabilities of the 10 models. The best model areas under the receiver operating characteristic curves (AUCs) calculated on the training and test cohort for LV5 were 0.871 and 0.756, respectively. The radiomic features calculated on pretreatment planning CT images could be predictive imaging biomarkers for RP after lung cancer SBRT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neumonitis por Radiación/diagnóstico por imagen , Radiocirugia/efectos adversos , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Femenino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/radioterapia , Masculino , Persona de Mediana Edad , Modelos Teóricos , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
13.
FEBS Lett ; 594(21): 3477-3489, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32870501

RESUMEN

MTG8 (RUNX1T1) is a fusion partner of AML1 (RUNX1) in the leukemic chromosome translocation t(8;21). The AML1-MTG8 fusion gene encodes a chimeric transcription factor. One of the highly conserved domains of MTG8 is TAFH which possesses homology with human TAF4 [TATA-box binding protein-associated factor]. To obtain specific inhibitors of the AML1-MTG8 fusion protein, we isolated RNA aptamers against the MTG8 TAFH domain using systematic evolution of ligands by exponential enrichment. All TAF aptamers contained guanine-rich sequences. Analyses of a TAF aptamer by NMR, CD, and mutagenesis revealed that it forms a parallel G-quadruplex structure in the presence of K+ . Furthermore, the aptamer could bind to the AML1-MTG8 fusion protein and dissociate the AML1-MTG8/DNA complex, suggesting that it can inhibit the dominant negative effects of AML1-MTG8 against normal AML1 function and serve as a potential therapeutic agent for leukemia.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ADN/metabolismo , G-Cuádruplex , Proteínas de Fusión Oncogénica/metabolismo , ARN/química , ARN/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/química , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/farmacología , Secuencia de Bases , G-Cuádruplex/efectos de los fármacos , Humanos , Leucemia/metabolismo , Mutación , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos
14.
Radiol Phys Technol ; 13(4): 327-335, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32986184

RESUMEN

Dosimetric evaluation and variation assessment were performed with two knowledge-based planning (KBP) models created at different periods for volumetric-modulated arc therapy (VMAT) for prostate cancer at five institutes. The first and second models (F- and S-models) for KBP were created before April 2017 and April 2019, respectively. The S-model was created using feedback plans from the F-model. Dose evaluation was compared between the two models using the same two computed tomography (CT) datasets and structures. The evaluation metrics were the dose received by 95.0% and 2.0% of the planning target volume (PTV); dose-volume parameters to the rectum and bladder as V90, V80, and V50; and monitor unit (MU). Dosimetric variation was compared by exporting estimated dose-volume histograms for each model to the Model Analytics website and assessing the organ at risk volume. There were no dosimetric differences between the two models for PTV. The V50 of the rectum in the S-model had improved compared to that of the F-model (case I: 49.3 ± 15.6 and 43.5 ± 15.2 [p = 0.08]; case II: 42.5 ± 16.9 and 36.0 ± 15.6 [p = 0.138]). The differences in other parameters were within ± 1.8% between the rectum and the bladder. The MU was slightly higher in the S-model than in the F-model, and dosimetric variation was reduced to the rectum and bladder among all the institutes. The polished S-model for KBP could be used for standardization of the plan quality and sharing of KBP models in VMAT for prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
15.
J Appl Clin Med Phys ; 21(2): 73-81, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31957964

RESUMEN

PURPOSE: There remain uncertainties due to inter- and intraobserver variability in soft-tissue-based patient positioning even with the use of image-guided radiation therapy (IGRT). This study aimed to reveal observer uncertainties of soft-tissue-based patient positioning on cone-beam computed tomography (CBCT) images for prostate cancer IGRT. METHODS: Twenty-six patients (7-8 fractions/patient, total number of 204 fractions) who underwent IGRT for prostate cancer were selected. Six radiation therapists retrospectively measured prostate cancer location errors (PCLEs) of soft-tissue-based patient positioning between planning CT (pCT) and pretreatment CBCT (pre-CBCT) images after automatic bone-based registration. Observer uncertainties were evaluated based on residual errors, which denoted the differences between soft-tissue and reference positioning errors. Reference positioning errors were obtained as PCLEs of contour-based patient positioning between pCT and pre-CBCT images. Intraobserver variations were obtained from the difference between the first and second soft-tissue-based patient positioning repeated by the same observer for each fraction. Systematic and random errors of inter- and intraobserver variations were calculated in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) directions. Finally, clinical target volume (CTV)-to-planning target volume (PTV) margins were obtained from systematic and random errors of inter- and intraobserver variations in AP, SI, and LR directions. RESULTS: Interobserver variations in AP, SI, and LR directions were 0.9, 0.9, and 0.5 mm, respectively, for the systematic error, and 1.8, 2.2, and 1.1 mm, respectively, for random error. Intraobserver variations were <0.2 mm in all directions. CTV-to-PTV margins in AP, SI, and LR directions were 3.5, 3.8, and 2.1 mm, respectively. CONCLUSION: Intraobserver variability was sufficiently small and would be negligible. However, uncertainties due to interobserver variability for soft-tissue-based patient positioning using CBCT images should be considered in CTV-to-PTV margins.


Asunto(s)
Variaciones Dependientes del Observador , Posicionamiento del Paciente , Neoplasias de la Próstata/diagnóstico por imagen , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Anciano de 80 o más Años , Tomografía Computarizada de Haz Cónico , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Incertidumbre
16.
Rep Pract Oncol Radiother ; 25(6): 1023-1028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390859

RESUMEN

BACKGROUND: The aim of this study was to clarify factors predicting the performance of knowledge-based planning (KBP) models in volume modulated arc therapy for prostate cancer in terms of sparing the organ at risk (OAR). MATERIALS AND METHODS: In three institutions, each KBP model was trained by more than 20 library plans (LP) per model. To validate the characterization of each KBP model, 45 validation plans (VP) were calculated by the KBP system. The ratios of overlap between the OAR volume and the planning target volume (PTV) to the whole organ volume (Voverlap/Vwhole) were analyzed for each LP and VP. Regression lines between dose-volume parameters (V90, V75, and V50) and Voverlap/Vwhole were evaluated. The mean OAR dose, V90, V75, and V50 of LP did not necessarily match those of VP. RESULTS: In both the rectum and bladder, the dose-volume parameters for VP were strongly correlated with Voverlap/Vwhole at institutes A, B, and C (R > 0.74, 0.85, and 0.56, respectively). Except in the rectum at institute B, the slopes of the regression lines for LP corresponded to those for VP. For dose-volume parameters for the rectum, the ratios of slopes of the regression lines in VP to those in LP ranged 0.51-1.26. In the bladder, most ratios were less than 1.0 (mean: 0.77). CONCLUSION: For each OAR, each model made distinct dosimetric characterizations in terms of Voverlap/Vwhole. The relationship between dose-volume parameters and Voverlap/Vwhole of OARs in LP predicts the KBP models' performance sparing OARs.

17.
Radiat Prot Dosimetry ; 192(3): 378-386, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33406532

RESUMEN

In the present study, by using double self-activated CsI detectors, the development of a neutron dosemeter system whose response indicates better agreement with the International Commission on Radiological Protection-74 rem-response was carried out to simply evaluate the neutron dose with high accuracy. The present double neutron dosemeter system, using a slow-neutron dosemeter (thermal to 10 keV) and a fast-neutron dosemeter (above 10 keV), consists of CsI scintillators wrapped with two types of neutron energy filtering materials: polyethylene and B4C silicon rubber. After optimization of each filter thickness, to confirm the validity of our method, the neutron ambient dose equivalents under several operating conditions of medical linear accelerators (Linacs) were evaluated using a Monte Carlo simulation and an experiment with the present dosemeter. From these results, the present dosimetry system has enabled a more accurate neutron dose evaluation than our conventional dosemeter, and the present dosemeter was suitable for the neutron dosimetry for 10 MV Linac environments.


Asunto(s)
Neutrones , Aceleradores de Partículas , Monitoreo de Radiación , Diseño de Equipo , Dosis de Radiación , Sensibilidad y Especificidad
18.
Phys Med ; 64: 174-181, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31515017

RESUMEN

PURPOSE: The aim of this study was to investigate whether additional manual objectives are necessary for the RapidPlan (RP) with a single optimization. We conducted multi-institutional comparisons of plan quality for head and neck cancer (HNC) using the models created at each institute. METHODS: The ability of RP to produce acceptable plans for dose requirements was evaluated in two types of oropharynx cancers at five institutes in Japan. Volumetric modulated arc therapy plans created without (RP plan) and with additional manual objectives (M-RP plan) were compared in terms of planning target volume (PTV), brainstem, spinal cord and parotid glands in dosimetric parameters. RESULTS: There were no major dosimetric PTV differences between RP and M-RP plans. For the brainstem and spinal cord in the RP plans, only 40% and 30% of the plans achieved the dose requirements, while the M-RP plans with upper objective added to volume 0% at all institutes achieved them for 90% of the plans. For the L-parotid gland, there was no difference in the RP and M-RP plans (both were 40%) in achieving the acceptable criteria. For the R-parotid gland, 60% and 80% of the RP and M-RP plans achieved the constraint criteria, and in terms of the achievement rate, the RP plans were relatively high. CONCLUSIONS: M-RP plans did not require reoptimization; only an upper objective was needed for the brainstem and spinal cord, while the parotid gland dose was reduced in both RP plans with the auto generated line objectives alone.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/efectos adversos
19.
J Contemp Brachytherapy ; 11(2): 137-145, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31139222

RESUMEN

PURPOSE: To examine the anatomical position of point B and the relationship between the dose at point B and the dose delivered to the pelvic lymph nodes in computed tomography (CT)-based brachytherapy for cervical cancer. MATERIAL AND METHODS: Forty-nine cervical cancer patients were treated at Kyushu University Hospital. For all cases, planning CT images obtained after the applicator insertion were imported to an Oncentra Brachy (Elekta AB, Stockholm, Sweden), and points A (dose prescription, 6 Gy) and points B were set according to the Manchester method. The pelvic lymph node regions (external iliac, internal iliac, and obturator) were contoured, and the anatomic positions of 98 points B in 49 patients were examined. Dose volume histogram (DVH) parameters (D100, D90, D50, D2cc, D1cc, and D0.1cc) were calculated for each lymph node region and compared with the point B dose. RESULTS: The mean bilateral dose to point B was 1.70 ±0.18 Gy, and 26 (27%) of 98 points B were not located in any pelvic lymph node regions. The DVH analysis indicated a low degree of correlation overall, and all values were significantly different from point B doses (p < 0.05), except for D0.1cc of the external iliac node (p = 0.0594) and D1cc of the internal iliac node (p = 0.0711). CONCLUSIONS: We investigated the anatomical location of point B in patients with cervical cancer who underwent brachytherapy, and the DVH analysis revealed that the point B dose was a poor surrogate for the dose delivered to the pelvic lymph nodes.

20.
Radiol Phys Technol ; 12(3): 268-276, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31140058

RESUMEN

This study aimed to evaluate the performance of a single-energy metal artifact reduction (SEMAR) algorithm for radiation therapy treatment using phantom cases with metal inserts, assess improvements in computed tomography (CT) number accuracy, and investigate its effects on treatment planning dosimetry. A standard electron density phantom was scanned with and without metal inserts. The numbers of tissue-equivalent materials on both uncorrected and SEMAR-corrected CT images were compared. Treatment planning accuracy was evaluated by comparing dose distributions computed using true density images (without metal inserts), uncorrected images (with metal inserts), and SEMAR-corrected images (with metal inserts) using three-dimensional gamma analysis. The numbers of the true density and uncorrected and SEMAR-corrected CT images in a muscle plug with unilateral inserts were 25.9 HU, - 281.8 HU, and 26.1 HU, respectively. A similar tendency was obtained for other tissue-equivalent materials, and the numbers on CT images were improved with the SEMAR algorithm. In cases involving 1 portal irradiation, 10-MV X-ray, and the Acuros XB algorithm, the pass ratio between the true density and uncorrected images was 89.89%, while that between the true density and SEMAR-corrected images was 95.03%. Improvements in dose distribution were evident using the SEMAR algorithm. Similar trends were found for different irradiation methods and dose calculation algorithms. The SEMAR algorithm can significantly reduce metal artifacts on CT images used for radiation treatment planning. This aspect influenced dosimetry in the region of the artifact and dose distribution was significantly improved with use of the SEMAR-corrected images.


Asunto(s)
Algoritmos , Artefactos , Metales , Radioterapia Guiada por Imagen , Tomografía Computarizada por Rayos X , Radiometría , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA