Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210988

RESUMEN

Autophagy has recently been shown to be required for tapetal programmed cell death (PCD) and pollen maturation in rice. A transcriptional regulatory network is also known to play a key role in the progression of tapetal PCD. However, the relationship between the gene regulatory network and autophagy in rice anther development is mostly unknown. Here, we comprehensively analyzed the effect of autophagy disruption on gene expression profile during the tapetal PCD in rice anther development using high-throughput RNA sequencing. Expression of thousands of genes, including specific transcription factors and several proteases required for tapetal degradation, fluctuated synchronously at specific stages during tapetal PCD progression in the wild-type anthers, while this fluctuation showed significant delay in the autophagy-deficient mutant Osatg7-1. Moreover, gene ontology enrichment analysis in combination with self-organizing map clustering as well as pathway analysis revealed that the expression patterns of a variety of organelle-related genes as well as genes involved in carbohydrate/lipid metabolism were affected in the Osatg7-1 mutant during pollen maturation. These results suggest that autophagy is required for proper regulation of gene expression and quality control of organelles and timely progression of tapetal PCD during rice pollen development.

2.
Plant Biotechnol (Tokyo) ; 36(2): 99-105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31768110

RESUMEN

We have previously shown that autophagy is required for post meiotic anther development including programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. However, the spatiotemporal dynamics of autophagy in the tapetum remain poorly understood. We here established an in vivo imaging technique to analyze the dynamics of autophagy in rice tapetum cells by expressing green fluorescent protein-tagged AtATG8, a marker for autophagosomes. 3D-imaging analysis revealed that the number of autophagosomes/autophagy-related structures is extremely low at the tetrad stage (stage 8), and autophagy is dramatically induced at the uninucleate stages (stage 9-10) throughout the tapetal cells during anther development. The present monitoring system for autophagy offers a powerful tool to analyze the regulation of autophagy in rice tapetal cells during pollen maturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA