Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(9): 110424, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235802

RESUMEN

Cancer histological images contain rich biological and clinical information, but quantitative representation can be problematic and has prevented the direct comparison and accumulation of large-scale datasets. Here, we show successful universal encoding of cancer histology by deep texture representations (DTRs) produced by a bilinear convolutional neural network. DTR-based, unsupervised histological profiling, which captures the morphological diversity, is applied to cancer biopsies and reveals relationships between histologic characteristics and the response to immune checkpoint inhibitors (ICIs). Content-based image retrieval based on DTRs enables the quick retrieval of histologically similar images using The Cancer Genome Atlas (TCGA) dataset. Furthermore, via comprehensive comparisons with driver and clinically actionable gene mutations, we successfully predict 309 combinations of genomic features and cancer types from hematoxylin-and-eosin-stained images. With its mounting capabilities on accessible devices, such as smartphones, universal encoding for cancer histology has a strong impact on global equalization for cancer diagnosis and therapies.


Asunto(s)
Neoplasias , Redes Neurales de la Computación , Genómica , Humanos , Mutación/genética , Neoplasias/genética
2.
IEEE Trans Med Imaging ; 38(2): 550-560, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716025

RESUMEN

Automated detection of cancer metastases in lymph nodes has the potential to improve the assessment of prognosis for patients. To enable fair comparison between the algorithms for this purpose, we set up the CAMELYON17 challenge in conjunction with the IEEE International Symposium on Biomedical Imaging 2017 Conference in Melbourne. Over 300 participants registered on the challenge website, of which 23 teams submitted a total of 37 algorithms before the initial deadline. Participants were provided with 899 whole-slide images (WSIs) for developing their algorithms. The developed algorithms were evaluated based on the test set encompassing 100 patients and 500 WSIs. The evaluation metric used was a quadratic weighted Cohen's kappa. We discuss the algorithmic details of the 10 best pre-conference and two post-conference submissions. All these participants used convolutional neural networks in combination with pre- and postprocessing steps. Algorithms differed mostly in neural network architecture, training strategy, and pre- and postprocessing methodology. Overall, the kappa metric ranged from 0.89 to -0.13 across all submissions. The best results were obtained with pre-trained architectures such as ResNet. Confusion matrix analysis revealed that all participants struggled with reliably identifying isolated tumor cells, the smallest type of metastasis, with detection rates below 40%. Qualitative inspection of the results of the top participants showed categories of false positives, such as nerves or contamination, which could be targeted for further optimization. Last, we show that simple combinations of the top algorithms result in higher kappa metric values than any algorithm individually, with 0.93 for the best combination.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Metástasis Linfática/diagnóstico por imagen , Ganglio Linfático Centinela/diagnóstico por imagen , Algoritmos , Neoplasias de la Mama/patología , Femenino , Técnicas Histológicas , Humanos , Metástasis Linfática/patología , Ganglio Linfático Centinela/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...