Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915560

RESUMEN

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.

2.
JCPP Adv ; 4(2): e12223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38827983

RESUMEN

Background: Autistic traits are often reported to be elevated in children diagnosed with attention-deficit/hyperactivity disorder (ADHD). However, the distribution of subclinical autistic traits in children with ADHD has not yet been established; knowing this may have important implications for diagnostic and intervention processes. The present study proposes a preliminary model of the distribution of parent-reported ADHD and subclinical autistic traits in two independent samples of Australian children with and without an ADHD diagnosis. Methods: Factor mixture modelling was applied to Autism Quotient and Conners' Parent Rating Scale - Revised responses from parents of Australian children aged 6-15 years who participated in one of two independent studies. Results: A 2-factor, 2-class factor mixture model with class varying factor variances and intercepts demonstrated the best fit to the data in both discovery and replication samples. The factors corresponded to the latent constructs of 'autism' and 'ADHD', respectively. Class 1 was characterised by low levels of both ADHD and autistic traits. Class 2 was characterised by high levels of ADHD traits and low-to-moderate levels of autistic traits. The classes were largely separated along diagnostic boundaries. The largest effect size for differences between classes on the Autism Quotient was on the Social Communication subscale. Conclusions: Our findings support the conceptualisation of ADHD as a continuum, whilst confirming the utility of current categorical diagnostic criteria. Results suggest that subclinical autistic traits, particularly in the social communication domain, are unevenly distributed across children with clinically significant levels of ADHD traits. These traits might be profitably screened for in assessments of children with high ADHD symptoms and may also represent useful targets for intervention.

3.
Neural Netw ; 171: 171-185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091761

RESUMEN

Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to meditation. However, previous research has mostly examined power in different frequency bands. The practical objective of this study was to comprehensively test whether other types of time-series analysis methods are better suited to characterize brain activity related to meditation. To achieve this, we compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity differences in meditators, using many measures that are novel in meditation research. Eyes-closed resting-state EEG data from 49 meditators and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7381 time-series features from each PC and each participant and used them to train classification algorithms to identify meditators. Highly differentiating individual features from successful classifiers were analysed in detail. Only the third PC (which had a central-parietal maximum) showed above-chance classification accuracy (67 %, pFDR = 0.007), for which 405 features significantly distinguished meditators (all pFDR < 0.05). Top-performing features indicated that meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast, classifiers trained with traditional band-power measures did not distinguish the groups (pFDR > 0.05). Our novel analysis approach suggests the key signatures of meditators' brain activity are higher temporal stability and a distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this EEG component might underpin the higher attentional stability associated with meditation. The novel time-series properties identified here have considerable potential for future exploration in meditation research and the analysis of neural dynamics more broadly.


Asunto(s)
Meditación , Humanos , Encéfalo , Electroencefalografía , Atención , Descanso
4.
Elife ; 122023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824184

RESUMEN

Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.


Asunto(s)
Mapeo Encefálico , Encéfalo , Ratones , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Cuerpo Estriado , Neostriado
5.
JAMA Psychiatry ; 80(12): 1246-1257, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728918

RESUMEN

Importance: Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. Objective: To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. Design, Settings, and Participants: This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. Main Outcomes and Measures: Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. Results: Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. Conclusion and Relevance: These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Masculino , Adulto , Humanos , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Antipsicóticos/uso terapéutico , Estudios Transversales , Estudios de Casos y Controles , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
6.
Nat Commun ; 14(1): 6000, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752115

RESUMEN

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Magnetoencefalografía , Neurofisiología , Receptores de Neurotransmisores
7.
Nature ; 618(7965): 566-574, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258669

RESUMEN

The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Axones/fisiología , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/fisiología , Imagen por Resonancia Magnética , Neuronas/fisiología
8.
PLoS Biol ; 21(3): e3002031, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917567

RESUMEN

Obsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning. Here, we examine evidence for asymmetric reward-learning in OCD and PG by leveraging model-based functional magnetic resonance imaging (fMRI). Compared with healthy controls (HC), OCD patients exhibited a lower learning rate for worse-than-expected outcomes, which was associated with the attenuated encoding of negative reward prediction errors in the dorsomedial prefrontal cortex and the dorsal striatum. PG patients showed higher and lower learning rates for better- and worse-than-expected outcomes, respectively, accompanied by higher encoding of positive reward prediction errors in the anterior insula than HC. Perseveration did not differ considerably between the patient groups and HC. These findings elucidate the neural computations of reward-learning that are altered in OCD and PG, providing a potential account of behavioural inflexibility in those mental disorders.


Asunto(s)
Juego de Azar , Trastorno Obsesivo Compulsivo , Humanos , Refuerzo en Psicología , Recompensa , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Imagen por Resonancia Magnética
9.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747831

RESUMEN

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6 800 timeseries features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is colocalized with multiple micro-architectural features, including genomic gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.

10.
Biol Psychiatry ; 93(5): 391-404, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725139

RESUMEN

Modern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses. Our aim is to facilitate the development of standardized and reproducible approaches for this rapidly growing field. We identify sources of methodological variability, key choices that can affect findings, and considerations for mitigating false positive and/or spurious results. Finally, we provide an overview of freely available open-source toolboxes implementing current best-practice procedures across all 3 analysis phases.


Asunto(s)
Imagen por Resonancia Magnética , Transcriptoma , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Perfilación de la Expresión Génica
11.
Nat Comput Sci ; 3(10): 883-893, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38177751

RESUMEN

Scientists have developed hundreds of techniques to measure the interactions between pairs of processes in complex systems, but these computational methods-from contemporaneous correlation coefficients to causal inference methods-define and formulate interactions differently, using distinct quantitative theories that remain largely disconnected. Here we introduce a large assembled library of 237 statistics of pairwise interactions, and assess their behavior on 1,053 multivariate time series from a wide range of real-world and model-generated systems. Our analysis highlights commonalities between disparate mathematical formulations of interactions, providing a unified picture of a rich interdisciplinary literature. Using three real-world case studies, we then show that simultaneously leveraging diverse methods can uncover those most suitable for addressing a given problem, facilitating interpretable understanding of the quantitative formulation of pairwise dependencies that drive successful performance. Our results and accompanying software enable comprehensive analysis of time-series interactions by drawing on decades of diverse methodological contributions.

12.
Biol Psychiatry Glob Open Sci ; 2(4): 319-331, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36324650

RESUMEN

Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.

13.
Sleep Med ; 98: 39-52, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779380

RESUMEN

The widely used guidelines for sleep staging were developed for the visual inspection of electrophysiological recordings by the human eye. As such, these rules reflect a limited range of features in these data and are therefore restricted in accurately capturing the physiological changes associated with sleep. Here we present a novel analysis framework that extensively characterizes sleep dynamics using over 7700 time-series features from the hctsa software. We used clustering to categorize sleep epochs based on the similarity of their time-series features, without relying on established scoring conventions. The resulting sleep structure overlapped substantially with that defined by visual scoring. However, we also observed discrepancies between our approach and traditional scoring. This divergence principally stemmed from the extensive characterization by hctsa features, which captured distinctive time-series properties within the traditionally defined sleep stages that are overlooked with visual scoring. Lastly, we report time-series features that are highly discriminative of stages. Our framework lays the groundwork for a data-driven exploration of sleep sub-stages and has significant potential to identify new signatures of sleep disorders and conscious sleep states.


Asunto(s)
Electroencefalografía , Fases del Sueño , Análisis por Conglomerados , Electroencefalografía/métodos , Humanos , Polisomnografía/métodos , Sueño/fisiología , Fases del Sueño/fisiología , Factores de Tiempo
14.
Sci Adv ; 8(22): eabm6127, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658036

RESUMEN

The complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we derive a new formalism that more accurately captures the competing pressures of wiring cost minimization and topological complexity. We further show that model performance can be improved by accounting for developmental changes in brain geometry and associated wiring costs, and by using interregional transcriptional or microstructural similarity rather than topological wiring rules. However, all models struggled to capture topographical (i.e., spatial) network properties. Our findings highlight an important role for genetics in shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of connectome organization.

15.
Front Comput Neurosci ; 16: 847336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547660

RESUMEN

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.

17.
Elife ; 102021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34783653

RESUMEN

Gene expression fundamentally shapes the structural and functional architecture of the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization across research groups has given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox, an open-access software package for working with transcriptomic data, and use it to examine how methodological variability influences the outcomes of research using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find that choice of pipeline has a large impact on research findings, with parameters commonly varied in the literature influencing correlations between derived gene expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with processing steps that influence gene normalization yielding the greatest impact on downstream statistical inferences and conclusions. The presented work and the development of the abagen toolbox lay the foundation for more standardized and systematic research in imaging transcriptomics, and will help to advance future understanding of the influence of gene expression in the human brain.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/instrumentación , Programas Informáticos , Perfilación de la Expresión Génica/normas , Humanos , Estándares de Referencia , Transcriptoma , Flujo de Trabajo
18.
Neuroimage ; 244: 118570, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508898

RESUMEN

The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Variación Biológica Poblacional , Humanos , Neuroimagen , Fenotipo , Transcriptoma , Gemelos
19.
Nat Commun ; 12(1): 4237, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244483

RESUMEN

Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs.


Asunto(s)
Encéfalo/fisiología , Conectoma , Redes Reguladoras de Genes , Red Nerviosa/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Conjuntos de Datos como Asunto , Imagen de Difusión por Resonancia Magnética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Modelos Genéticos , Gemelos
20.
Nat Commun ; 12(1): 2669, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976144

RESUMEN

Transcriptomic atlases have improved our understanding of the correlations between gene-expression patterns and spatially varying properties of brain structure and function. Gene-category enrichment analysis (GCEA) is a common method to identify functional gene categories that drive these associations, using gene-to-category annotation systems like the Gene Ontology (GO). Here, we show that applying standard GCEA methodology to spatial transcriptomic data is affected by substantial false-positive bias, with GO categories displaying an over 500-fold average inflation of false-positive associations with random neural phenotypes in mouse and human. The estimated false-positive rate of a GO category is associated with its rate of being reported as significantly enriched in the literature, suggesting that published reports are affected by this false-positive bias. We show that within-category gene-gene coexpression and spatial autocorrelation are key drivers of the false-positive bias and introduce flexible ensemble-based null models that can account for these effects, made available as a software toolbox.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Anotación de Secuencia Molecular/métodos , Animales , Humanos , Masculino , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...