Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res Lett ; 15(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-33868452

RESUMEN

Mobile sources emit particulate matter as well as precursors to particulate matter (PM2.5) and ground-level ozone, pollutants known to adversely impact human health. This study uses source-apportionment photochemical air quality modeling to estimate the health burden (expressed as incidence) of an array of PM2.5- and ozone-related adverse health impacts, including premature death, attributable to 17 mobile source sectors in the US in 2011 and 2025. Mobile sector-attributable air pollution contributes a substantial fraction of the overall pollution-related mortality burden in the U.S., accounting for about 20% of the PM2.5 and ozone-attributable deaths in 2011 (between 21 000 and 55 000 deaths, depending on the study used to derive the effect estimate). This value falls to about 13% (between 13 000 and 37 000 deaths) by 2025 due to regulatory and voluntary programs reducing emissions from mobile sources. Similar trends across all morbidity health impacts can also be observed. Emissions from on-road sources are the largest contributor to premature deaths; this is true for both 2011 (between 12 000 and 31 000 deaths) and 2025 (between 6700 and 18 000 deaths). Non-road construction engines, C3 marine engines and emissions from rail also contribute to large portions of premature deaths. Across the 17 mobile sectors modeled, the PM2.5-attributable mortality and morbidity burden falls between 2011 and 2025 for 12 sectors and increases for 5. Ozone-attributable mortality and morbidity burden increases between 2011 and 2025 for 10 sectors and falls for 7. These results extend the literature beyond generally aggregated mobile sector health burden toward a representation of highly-resolved source characterization of both current and future health burden. The quantified future mobile source health burden is a novel feature of this analysis and could prove useful for decisionmakers and affected stakeholders.

2.
Sci Total Environ ; 650(Pt 2): 2490-2498, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30296769

RESUMEN

By-products of mobile source combustion processes, such as those associated with gasoline- and diesel-powered engines, include direct emissions of particulate matter as well as precursors to particulate matter and ground-level ozone. Human exposure to fine particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) is associated with increased incidence of premature mortality and morbidity outcomes. This study builds upon recent, detailed source-apportionment air quality modeling to project the health-related benefits of reducing PM2.5 from mobile sources across the contiguous U.S. in 2025. Updating a previously published benefits analysis approach, we develop national-level benefit per ton estimates for directly emitted PM2.5, SO2/pSO4, and NOX for 16 mobile source sectors spanning onroad vehicles, nonroad engines and equipment, trains, marine vessels, and aircraft. These benefit per ton estimates provide a reduced-form tool for estimating and comparing benefits across multiple mobile source emission scenarios and can be applied to assess the benefits of mobile source policies designed to improve air quality. We found the benefit per ton of directly emitted PM2.5 in 2025 ranges from $110,000 for nonroad agriculture sources to $700,000 for onroad light duty gas cars and motorcycles (in 2015 dollars and based on an estimate of PM-related mortality derived from the American Cancer Society cohort study). Benefit per ton values for SO2/pSO4 range from $52,000 for aircraft sources (including emissions from ground support vehicles) to $300,000 for onroad light duty diesel emissions. Benefit per ton values for NOX range from $2100 for C1 and C2 marine vessels to $7500 for "nonroad all other" mobile sources, including industrial, logging, and oil field sources. Benefit per ton estimates increase approximately 2.26-fold when using an alternative concentration response function to derive PM2.5-related mortality. We also report benefit per ton values for the eastern and western U.S. to account for broad spatial heterogeneity patterns in emissions reductions, population exposure and air quality benefits.

3.
Environ Res ; 143(Pt A): 19-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26414085

RESUMEN

Among industrialised countries, fine particle (PM2.5) and ozone levels in the Sydney metropolitan area of Australia are relatively low. Annual mean PM2.5 levels have historically remained below 8 µg/m(3) while warm season (November-March) ozone levels occasionally exceed the Australian guideline value of 0.10 ppm (daily 1 h max). Yet, these levels are still below those seen in the United States and Europe. This analysis focuses on two related questions: (1) what is the public health burden associated with air pollution in Sydney; and (2) to what extent would reducing air pollution reduce the number of hospital admissions, premature deaths and number of years of life lost (YLL)? We addressed these questions by applying a damage function approach to Sydney population, health, PM2.5 and ozone data for 2007 within the BenMAP-CE software tool to estimate health impacts and economic benefits. We found that 430 premature deaths (90% CI: 310-540) and 5800 YLL (95% CI: 3900-7600) are attributable to 2007 levels of PM2.5 (about 2% of total deaths and 1.8% of YLL in 2007). We also estimate about 630 (95% CI: 410-840) respiratory and cardiovascular hospital admissions attributable to 2007 PM2.5 and ozone exposures. Reducing air pollution levels by even a small amount will yield a range of health benefits. Reducing 2007 PM2.5 exposure in Sydney by 10% would, over 10 years, result in about 650 (95% CI: 430-850) fewer premature deaths, a gain of 3500 (95% CI: 2300-4600) life-years and about 700 (95% CI: 450-930) fewer respiratory and cardiovascular hospital visits. These results suggest that substantial health benefits are attainable in Sydney with even modest reductions in air pollution.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Salud Pública/métodos , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Australia , Ciudades , Monitoreo Epidemiológico , Humanos , Morbilidad/tendencias , Mortalidad/tendencias , Ozono/análisis , Ozono/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Salud Pública/estadística & datos numéricos , Salud Pública/tendencias , Estaciones del Año
4.
Environ Sci Technol ; 47(8): 3580-9, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23506413

RESUMEN

Recent risk assessments have characterized the overall burden of recent PM2.5 and ozone levels on public health, but generally not the variability of these impacts over time or by sector. Using photochemical source apportionment modeling and a health impact function, we attribute PM2.5 and ozone air quality levels, population exposure and health burden to 23 industrial point, area, mobile and international emission sectors in the Continental U.S. in 2005 and 2016. Our modeled policy scenarios account for a suite of emission control requirements affecting many of these sectors. Between these two years, the number of PM2.5 and ozone-related deaths attributable to power plants and mobile sources falls from about 68,000 (90% confidence interval from 48,000 to 87,000) to about 36,000 (90% confidence intervals from 26,000 to 47,000). Area source mortality risk grows slightly between 2005 and 2016, due largely to population growth. Uncertainties relating to the timing and magnitude of the emission reductions may affect the size of these estimates. The detailed sector-level estimates of the size and distribution of mortality and morbidity risk suggest that the air pollution mortality burden has fallen over time but that many sectors continue to pose a substantial risk to human health.


Asunto(s)
Contaminación del Aire/análisis , Costo de Enfermedad , Evaluación del Impacto en la Salud/tendencias , Aire/análisis , Electricidad , Fuentes Generadoras de Energía , Actividades Humanas , Humanos , Modelos Teóricos , Ozono/análisis , Material Particulado/química , Factores de Tiempo , Estados Unidos
5.
Environ Int ; 49: 141-51, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23022875

RESUMEN

BACKGROUND: Air pollution benefits assessments tend to be time and resource intensive. Reduced-form approaches offer computational efficiency, but may introduce uncertainty. Some reduced-form approaches apply simplified air quality models, which may not capture the complex non-linear chemistry governing the formation of certain pollutants such as PM2.5. Other approaches apply the results of sophisticated photochemical modeling, but characterize only a small number of source types in a limited geographic area. METHODS: We apply CAMx source apportionment photochemical modeling, coupled with a PC-based human health benefits software program, to develop a suite of PM2.5 benefit per ton estimates. These per-ton estimates relate emission changes to health impacts and monetized benefits for 17 sectors across the continental U.S., including Electricity Generating Units (EGU), mobile, area and industrial point sources. RESULTS: The benefit per ton of reducing directly emitted PM2.5 is about an order of magnitude larger than reducing emissions of PM2.5 precursor emissions. On a per-ton basis, the value of reducing directly emitted PM2.5 and PM2.5 precursors in 2005 ranges between approximately $1300 (2010$) for reducing a ton of NO(x) from Ocean-Going Vessels to about $450,000 (2010$) for reducing a ton of directly emitted PM2.5 from Iron and Steel facilities. The benefit per ton estimates for 2016 are generally higher than the 2005 estimates. The values estimated here are generally comparable with those generated using photochemical modeling, but larger than those calculated using simplified air quality models. CONCLUSIONS: Our approach characterizes well the per-ton benefits of reducing emissions from a broad array of 17 industrial point, EGU and mobile sectors, while our use of photochemical air quality modeling gives us greater confidence that we have accounted for the non-linear chemistry governing PM2.5 formation. The resulting benefit per-ton estimates thus represent a compromise between approaches that may simplify the treatment of PM2.5 air quality formation and those techniques that are based in photochemical modeling but account for only a small number of emission sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Material Particulado/análisis , Estado de Salud , Humanos , Industrias/estadística & datos numéricos , Modelos Químicos , Tamaño de la Partícula , Estados Unidos
6.
Risk Anal ; 31(6): 908-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21615761

RESUMEN

The U.S. Environmental Protection Agency undertook a case study in the Detroit metropolitan area to test the viability of a new multipollutant risk-based (MP/RB) approach to air quality management, informed by spatially resolved air quality, population, and baseline health data. The case study demonstrated that the MP/RB approach approximately doubled the human health benefits achieved by the traditional approach while increasing cost less than 20%--moving closer to the objective of Executive Order 12866 to maximize net benefits. Less well understood is how the distribution of health benefits from the MP/RB and traditional strategies affect the existing inequalities in air-pollution-related risks in Detroit. In this article, we identify Detroit populations that may be both most susceptible to air pollution health impacts (based on local-scale baseline health data) and most vulnerable to air pollution (based on fine-scale PM(2.5) air quality modeling and socioeconomic characteristics). Using these susceptible/vulnerable subpopulation profiles, we assess the relative impacts of each control strategy on risk inequality, applying the Atkinson Index (AI) to quantify health risk inequality at baseline and with either risk management approach. We find that the MP/RB approach delivers greater air quality improvements among these subpopulations while also generating substantial benefits among lower-risk populations. Applying the AI, we confirm that the MP/RB strategy yields less PM(2.5) mortality and asthma hospitalization risk inequality than the traditional approach. We demonstrate the value of this approach to policymakers as they develop cost-effective air quality management plans that maximize risk reduction while minimizing health inequality.


Asunto(s)
Contaminantes Atmosféricos , Política Ambiental , Justicia Social , Contaminantes Atmosféricos/toxicidad , Humanos , Tamaño de la Partícula
7.
Environ Sci Technol ; 45(4): 1450-7, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21247099

RESUMEN

Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution health impacts by incorporating temperature modeling and heat mortality health impact functions. This new method demonstrates the ability to apply the existing temperature-health literature to quantify prospective changes in climate-sensitive heat-related mortality. We compared estimates of future temperature with and without climate change and applied heat-mortality health functions to estimate relative changes in heat-related premature mortality. Using the A1B emissions scenario, we applied the GISS-II global circulation model downscaled to 36-km using MM5 and formatted using the Meteorology-Chemistry Interface Processor. For averaged temperatures derived from the 5 years 2048-2052 relative to 1999-2003 we estimated for the warm season May-September a national U.S. estimate of annual incidence of heat-related mortality to be 3700-3800 from all causes, 3500 from cardiovascular disease, and 21 000-27 000 from nonaccidental death, applying various health impact functions. Our estimates of mortality, produced to validate the application of a new methodology, suggest the importance of quantifying heat impacts in economic assessments of climate change.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Cambio Climático/mortalidad , Calor/efectos adversos , Modelos Teóricos , Predicción , Humanos , Incidencia , Estudios Prospectivos , Estaciones del Año , Estados Unidos/epidemiología
8.
Air Qual Atmos Health ; 2(3): 169-176, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19890404

RESUMEN

The benefit per ton ($/ton) of reducing PM(2.5) varies by the location of the emission reduction, the type of source emitting the precursor, and the specific precursor controlled. This paper examines how each of these factors influences the magnitude of the $/ton estimate. We employ a reduced-form air quality model to predict changes in ambient PM(2.5) resulting from an array of emission control scenarios affecting 12 different combinations of sources emitting carbonaceous particles, NO(x), SO(x), NH(3), and volatile organic compounds. We perform this modeling for each of nine urban areas and one nationwide area. Upon modeling the air quality change, we then divide the total monetized health benefits by the PM(2.5) precursor emission reductions to generate $/ton metrics. The resulting $/ton estimates exhibit the greatest variability across certain precursors and sources such as area source SO(x), point source SO(x), and mobile source NH(3). Certain $/ton estimates, including mobile source NO(x), exhibit significant variability across urban areas. Reductions in carbonaceous particles generate the largest $/ton across all locations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA