Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39005115

RESUMEN

The atomic pair distribution function (PDF) is a real-space representation of the structure of a material. Experimental PDFs are obtained using a Fourier transform from total scattering data which may or may not have Bragg diffraction peaks. The determination of Bragg peak resolution in scattering data from the fundamental physical parameters of the diffractometer used is well established, but after the Fourier transform from reciprocal to direct space, these contributions are harder to identify. Starting from an existing definition of the resolution function of large-area detectors for X-ray diffraction, this approach is expanded into direct space. The effect of instrumental parameters on PDF peak resolution is developed mathematically, then studied with modelling and comparison with experimental PDFs of LaB6 from measurements made in different-sized capillaries.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 1): 13-18, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174727

RESUMEN

The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage.

3.
IUCrJ ; 11(Pt 1): 34-44, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962471

RESUMEN

Many technologically important material properties are underpinned by disorder and short-range structural correlations; therefore, elucidating structure-property relationships in functional materials requires understanding both the average and the local structures. The latter information is contained within diffuse scattering but is challenging to exploit, particularly in single-crystal systems. Separation of the diffuse scattering into its constituent components can greatly simplify analysis and allows for quantitative parameters describing the disorder to be extracted directly. Here, a deep-learning method, DSFU-Net, is presented based on the Pix2Pix generative adversarial network, which takes a plane of diffuse scattering as input and factorizes it into the contributions from the molecular form factor and the chemical short-range order. DSFU-Net was trained on 198 421 samples of simulated diffuse scattering data and performed extremely well on the unseen simulated validation dataset in this work. On a real experimental example, DSFU-Net successfully reproduced the two components with a quality sufficient to distinguish between similar structural models based on the form factor and to refine short-range-order parameters, achieving values comparable to other established methods. This new approach could streamline the analysis of diffuse scattering as it requires minimal prior knowledge of the system, allows access to both components in seconds and is able to compensate for small regions with missing data. DSFU-Net is freely available for use and represents a first step towards an automated workflow for the analysis of single-crystal diffuse scattering.

4.
J Synchrotron Radiat ; 30(Pt 1): 267-272, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601946

RESUMEN

A new heater design, capable of fast heating and cooling to and from >1000°C, has been developed at the Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, France. The design uses a SiC head to distribute heat, and resistive Si3N4 heat cartridges to provide heat.

5.
Chem Mater ; 34(7): 3185-3196, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35557987

RESUMEN

We report the synthesis, structural characterization, and oxide ion and proton conductivities of the perovskite-related Ba3-x Sr x YGa2O7.5 family. Single-phase samples are prepared for 0 ≤ x ≤ 3 and show a complex structural evolution from P2/c to C2 space groups with an increase in x. For 1.0 ≲ x ≲ 2.4, average structures determined by X-ray and neutron powder diffraction show metrically orthorhombic unit cells, but HAADF-STEM imaging reveals this is caused by microstructural effects due to intergrowths of the Ba- and Sr-rich structure types. Variable-temperature powder diffraction studies suggest that 0 ≲ x ≲ 2.4 compositions undergo a phase transition upon being heated to space group Cmcm that involves disordering of the oxygen substructure. Thermal expansion coefficients are reported for the series. Complex impedance studies show that the Ba-rich samples are mixed proton and oxide ion conductors under moist atmospheres but are predominantly oxide ion conductors at high temperatures or under dry atmospheres. Sr-rich samples show significantly less water uptake and appear to be predominantly oxide ion conductors under the conditions studied.

6.
J Am Chem Soc ; 144(1): 615-624, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34967601

RESUMEN

Functional oxides showing high ionic conductivity have many important technological applications. We report oxide ion and proton conductivity in a family of perovskite-related compounds of the general formula A3OhTd2O7.5, where Oh is an octahedrally coordinated metal ion and Td is a tetrahedrally coordinated metal ion. The high tetrahedral content in these ABO2.5 compositions relative to that in the perovskite ABO3 or brownmillerite A2B2O5 structures leads to tetrahedra with only three of their four vertices connected in the polyhedral framework, imparting a potential low-energy mechanism for O2- migration. The low- and high-temperature average and local structures of Ba3YGa2O7 (P2/c, a = 7.94820(5) Å, b = 5.96986(4) Å, c = 18.4641(1) Å, and ß = 91.2927(5) ° at 22 °C) were determined by Rietveld and neutron pair distribution function (PDF) analysis, and a phase transition to a high-temperature P1121/a structure (a = 12.0602(1) Å, b = 9.8282(2) Å, c = 8.04982(6) Å, and γ = 107.844(3)° at 1000 °C) involving the migration of O2- ions was identified. Ionic conductivities of Ba3YGa2O7.5 and compositions substituted to introduce additional oxide vacancies and interstitials are reported. Most phases show proton conductivity at lower temperatures and oxide ion conductivity at high temperatures, with Ba3YGa2O7.5 retaining proton conductivity at high temperatures. Ba2.9La0.1YGa2O7.55 and Ba3YGa1.9Ti0.1O7.55 appear to be dominant oxide ion conductors, with conductivities an order of magnitude higher than that of the parent compound.

7.
J Am Chem Soc ; 141(25): 9989-9997, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31194535

RESUMEN

Extensive quasielastic neutron scattering measurements have been used to directly observe oxide ion dynamics on the nanosecond time scale in bismuth vanadate with formula Bi0.913V0.087O1.587, which exhibits remarkable oxide ion conductivity at low temperatures. This is the longest time scale neutron scattering study of any fluorite-type solid electrolyte, and it represents only the second case of oxide ion dynamics in any material observed on a nanosecond time scale by quasielastic neutron scattering. Ab initio molecular dynamics simulations reveal two mechanisms that contribute to the oxide ion dynamics in the material: a slower diffusion process through the Bi-O sublattice and a faster process which corresponds to more localized dynamics of the oxide ions within the VO x coordination spheres. The length of the trajectories simulated and the validation of the simulations by neutron scattering experiments provide for the first time a quantitative insight into the relative contributions of the two processes to the oxide ion conduction in this exceptional solid electrolyte, which can be used to derive design principles for the preparation of related oxide ion conductors with even better properties.

8.
Chem Mater ; 31(18): 7395-7404, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32063678

RESUMEN

Brownmillerite-type Sr2ScGaO5 has been investigated by a range of experimental X-ray and neutron scattering techniques (diffraction, total scattering, and spectroscopy) and density functional theory calculations in order to characterize its structure and dynamics. The material undergoes a second-order phase transition on heating during which a rearrangement of the (GaO4/2)∞ tetrahedral chains occurs, such that they change from being essentially fully ordered in a polar structure at room temperature to being orientationally disordered above 400 °C. Pair distribution function analysis carried out using neutron total scattering data suggests that GaO4 tetrahedra remain as fairly rigid units above and below this transition, whereas coordination polyhedra in the (ScO6/2)∞ layers distort more. Inelastic neutron scattering and phonon calculations reveal the particular modes that are associated with this structural change, which may assist ionic conductivity in the material at higher temperatures. On the basis of the correlations between these findings and the measured conductivity, we have synthesized a derivative compound with increased conductivity and suggest a possible conduction mechanism in these brownmillerite-type solid electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA