Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 58(9): 1507-1518, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922750

RESUMEN

Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.


Asunto(s)
Catharanthus/metabolismo , Glucósidos Iridoides/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Animales , Bioensayo , Transporte Biológico , Vías Biosintéticas/genética , Catharanthus/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Iridoides/metabolismo , Cinética , Modelos Biológicos , Oocitos/metabolismo , Transporte de Proteínas , Terpenos/metabolismo , Xenopus/metabolismo
2.
Planta ; 229(6): 1209-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19263076

RESUMEN

Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze the conversion of tryptophan to IAOx. CYP83B1 channels IAOx into I-GLS biosynthesis, CYP71A13 channels IAOx into camalexin biosynthesis, whereas the IAOx-metabolizing enzyme in IAA biosynthesis is not known. In this report, we demonstrate controlled production of I-GLSs by introducing an ethanol (EtOH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising tools for elucidating the interplay between primary and secondary metabolism.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Etanol/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Indoles/metabolismo , Oximas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Cromatografía Liquida , Análisis por Conglomerados , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosinolatos/química , Glucosinolatos/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Indoles/química , Espectrometría de Masas , Estructura Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oximas/química , Plantas Modificadas Genéticamente , Tiazoles/química , Tiazoles/metabolismo
3.
New Phytol ; 180(1): 27-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18564304

RESUMEN

Plant-parasitic nematodes are major pests of both temperate and tropical agriculture. Many of the most damaging species employ an advanced parasitic strategy in which they induce redifferentiation of root cells to form specialized feeding structures able to support nematode growth and reproduction over several weeks. Current control measures, particularly in intensive agriculture systems, rely heavily on nematicides but alternative strategies are required as effective chemicals are withdrawn from use. Here, we review the different approaches that are being developed to provide resistance to a range of nematode species. Natural, R gene-based resistance is currently exploited in traditional breeding programmes and research is ongoing to characterize the molecular basis for the observed resistant phenotypes. A number of transgenic approaches hold promise, the best described being the expression of proteinase inhibitors to disrupt nematode digestion. The application of plant-delivered RNA interference (RNAi) to silence essential nematode genes has recently emerged as a potentially valuable resistance strategy.


Asunto(s)
Nematodos/fisiología , Proteínas de Plantas/fisiología , Raíces de Plantas/parasitología , Animales , Anticuerpos/genética , Anticuerpos/fisiología , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Inhibidores de Cisteína Proteinasa/genética , Inhibidores de Cisteína Proteinasa/fisiología , Endotoxinas/genética , Endotoxinas/fisiología , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/fisiología , Interacciones Huésped-Parásitos/genética , Lectinas/genética , Lectinas/fisiología , Nematodos/genética , Control de Plagas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN
4.
Mol Plant Pathol ; 8(5): 595-609, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20507524

RESUMEN

SUMMARY Whole genome microarrays were used to study plant gene expression in mature Meloidogyne incognita-induced galls in Arabidopsis. We found 959 genes to be significantly differentially expressed, and two-thirds of these were down-regulated. Microarray results were confirmed by qRT-PCR. The temporal and spatial responses of four differentially expressed genes were analysed using GUS reporter plants following infection with M. incognita and the cyst nematode Heterodera schachtii. The ammonium transporter gene AtAMT1;2 was consistently and locally repressed in response to both nematodes at all developmental stages. The lateral organ boundary domain gene LBD41 showed up-regulation in the feeding sites of both nematode species, although there was variation in expression in saccate H. schachtii female feeding sites. Expression of an actin depolymerizing factor ADF3 and a lipid transfer protein was induced in feeding sites of both nematodes at the fusiform stage and this persisted in feeding sites of saccate M. incognita. These results contribute to the knowledge of how plant gene expression responds to parasitism by these nematodes as well as highlighting further differences in the mechanisms of development and maintenance of these feeding site structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...